Skip to main content

Deep-PUMR: Deep Positive and Unlabeled Learning with Manifold Regularization

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11301))

Included in the following conference series:

  • 3846 Accesses

Abstract

Training a binary classifier only on positive and unlabeled examples (i.e., the PU learning) is an important yet challenging issue, widely seen in many problems in which it is difficult to obtain negative examples. Existing methods for handling this challenge often perform unsatisfactorily, since they often ignore the relations between positive and unlabeled examples and are also limited to the traditional shallow learning frameworks. Therefore, this work proposes a new approach: Deep Positive and Unlabeled learning with Manifold Regularization (Deep-PUMR), which integrates the manifold regularization with deep neural networks to address the above issues with classic PU learning. Deep-PUMR holds two major advantages: (i) Our method exploits the manifold properties of data distribution to capture the relationship of positive and unlabeled examples; (ii) The adopted deep network enables Deep-PUMR with strong learning ability, especially on large-scale datasets. Extensive experiments on five diverse datasets demonstrate that Deep-PUMR achieves the state-of-the-art performance in comparison with classic PU learning algorithms and risk estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathbf {L}^i\) represents the sub-matrix of \(\mathbf {L}\) corresponding to \(\mathcal {D}^i\). For example, if the i-th mini-batch corresponds to the \(l_1\)-th examples to \(l_2\)-th examples, \(\mathbf {L}^i=\mathbf { L}_{l_1:l_2,l_1:l_2}\) in matlab formation.

References

  1. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. JMLR 7(1), 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Belkin, M., Niyogi, P., Sindhwani, V.: On manifold regularization. In: AISTATS, p. 1 (2005)

    Google Scholar 

  3. Du Plessis, M., Niu, G., Sugiyama, M.: Convex formulation for learning from positive and unlabeled data. In: ICML, pp. 1386–1394 (2015)

    Google Scholar 

  4. Du Plessis, M.C., Niu, G., Sugiyama, M.: Analysis of learning from positive and unlabeled data. In: NIPS, pp. 703–711 (2014)

    Google Scholar 

  5. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. JMLR 12(Jul), 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Elhamifar, E., Vidal, R.: Sparse manifold clustering and embedding. In: NIPS, pp. 55–63 (2011)

    Google Scholar 

  7. Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. In: KDD, pp. 213–220 (2008)

    Google Scholar 

  8. Gong, C., Liu, T., Tao, D., Fu, K., Tu, E., Yang, J.: Deformed graph laplacian for semisupervised learning. TNNLS 26(10), 2261–2274 (2015)

    MathSciNet  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. Hsieh, C.J., Natarajan, N., Dhillon, I.: PU learning for matrix completion. In: JMLR, pp. 2445–2453 (2015)

    Google Scholar 

  11. Jaafar, H.F., Nandi, A.K., Al-Nuaimy, W.: Automated detection and grading of hard exudates from retinal fundus images. In: EUSIPCO, pp. 66–70. IEEE (2011)

    Google Scholar 

  12. Kiryo, R., Niu, G., du Plessis, M.C., Sugiyama, M.: Positive-unlabeled learning with non-negative risk estimator. NIPS (2017)

    Google Scholar 

  13. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Lee, W.S., Liu, B.: Learning with positive and unlabeled examples using weighted logistic regression. In: ICML, pp. 448–455 (2003)

    Google Scholar 

  16. Li, X.L., Yu, P.S., Liu, B., Ng, S.K.: Positive unlabeled learning for data stream classification. In: SDM, pp. 259–270 (2009)

    Google Scholar 

  17. Li, X., Liu, B.: Learning to classify texts using positive and unlabeled data. In: IJCAI, pp. 587–592 (2003)

    Google Scholar 

  18. Liu, B., Lee, W.S., Yu, P.S., Li, X.: Partially supervised classification of text documents. In: ICML, pp. 387–394 (2002)

    Google Scholar 

  19. Menon, A., Van Rooyen, B., Ong, C.S., Williamson, B.: Learning from corrupted binary labels via class-probability estimation. In: ICML, pp. 125–134 (2015)

    Google Scholar 

  20. Nadler, B., Lafon, S., Kevrekidis, I., Coifman, R.R.: Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators. In: NIPS, pp. 955–962 (2006)

    Google Scholar 

  21. Niu, G., du Plessis, M.C., Sakai, T., Ma, Y., Sugiyama, M.: Theoretical comparisons of positive-unlabeled learning against positive-negative learning. In: NIPS, pp. 1199–1207 (2016)

    Google Scholar 

  22. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR (2016)

    Google Scholar 

  23. Rothe, R., Timofte, R., Gool, L.V.: Deep expectation of real and apparent age from a single image without facial landmarks. IJCV 126, 144–157 (2016)

    Article  MathSciNet  Google Scholar 

  24. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv (2016)

    Google Scholar 

Download references

Acknowledgments

This research is partly supported by NSFC, China (No: 61572315, 6151101179) and 973 Plan, China (No. 2015CB856004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Liu, F., Tu, E., Cao, L., Yang, J. (2018). Deep-PUMR: Deep Positive and Unlabeled Learning with Manifold Regularization. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11301. Springer, Cham. https://doi.org/10.1007/978-3-030-04167-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04167-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04166-3

  • Online ISBN: 978-3-030-04167-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics