Skip to main content

Domain Adaptation via Identical Distribution Across Models and Tasks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11301))

Included in the following conference series:

Abstract

Deep convolution neural network (CNN) models with millions of parameters trained in large-scale datasets make domain adaptation difficult to be realized. In order to be applied for different application scenarios, various light weight network models have been proposed. These models perform well in large-scale datasets but are hard to train from randomly initialized weights when lack of data. Our framework is proposed to connect a pre-trained deep model with a light weight model by enforcing feature distributions of the two models being identical. It is proved in our work that knowledge in source model can be transferred to target light weight model by identical distribution loss. Meanwhile, distribution loss allows training dataset to utilize sparse labeled data in semi-supervised classification task. Moreover, distribution loss can be applied to large amount of unlabeled data from target domain. In the experiments, several standard benchmarks on domain adaptation are evaluated and our work gets state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aytar, Y., Zisserman, A.: Tabula rasa: model transfer for object category detection. In: International Conference on Computer Vision, pp. 2252–2259 (2011)

    Google Scholar 

  2. Ba, L.J., Caruana, R.: Do deep nets really need to be deep? In: Advances in Neural Information Processing Systems, pp. 2654–2662 (2013)

    Google Scholar 

  3. Bergamo, A., Torresani, L.: Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. In: Neural Information Processing Systems, pp. 181–189 (2010)

    Google Scholar 

  4. Chopra, S.: DLID: deep learning for domain adaptation by interpolating between domains. In: ICML Workshop on Challenges in Representation Learning (2013)

    Google Scholar 

  5. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. Mach. Learn. Res. 12(Aug), 2493–2537 (2011)

    MATH  Google Scholar 

  6. Donahue, J., et al.: Decaf: a deep convolutional activation feature for generic visual recognition 50(1), I-647 (2013)

    Google Scholar 

  7. Duan, L., Tsang, I.W., Xu, D.: Domain transfer multiple kernel learning. Pattern Anal. Mach. Intell. 34(3), 465–479 (2012)

    Article  Google Scholar 

  8. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: International Conference on Computer Vision, pp. 2960–2967 (2013)

    Google Scholar 

  9. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189 (2015)

    Google Scholar 

  10. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  11. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Machine Learning, pp. 513–520 (2011)

    Google Scholar 

  12. Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks using vector quantization. Computer Science (2014)

    Google Scholar 

  13. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. In: Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  14. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. Comput. Sci. 14(7), 38–39 (2015)

    Google Scholar 

  15. Hoffman, J., et al.: LSDA: large scale detection through adaptation. In: Advances in Neural Information Processing Systems, pp. 3536–3544 (2014)

    Google Scholar 

  16. Hoffman, J., Rodner, E., Donahue, J., Darrell, T., Saenko, K.: Efficient learning of domain-invariant image representations. Computer Science (2013)

    Google Scholar 

  17. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. In: Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  18. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: ACM Multimedia, pp. 675–678 (2014)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  20. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  21. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: learning bounds and algorithms. arXiv preprint arXiv:0902.3430 (2009)

  22. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)

    Google Scholar 

  23. Pan, S.J., Yang, Q., et al.: A survey on transfer learning. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  24. Parkhi, O.M., Vedaldi, A., Zisserman, A., et al.: Deep face recognition. In: The British Machine Vision Conference, vol. 1, p. 6 (2015)

    Google Scholar 

  25. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  26. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  27. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., Lecun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. Eprint Arxiv (2013)

    Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)

    Google Scholar 

  29. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems, vol. 26, pp. 2553–2561 (2013)

    Google Scholar 

  30. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: IEEE International Conference on Computer Vision, pp. 4068–4076 (2017)

    Google Scholar 

  31. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: Maximizing for domain invariance. Computer Science (2014)

    Google Scholar 

  32. Yang, J., Yan, R., Hauptmann, A.G.: Adapting SVM classifiers to data with shifted distributions. In: International Conference Data Mining Workshops, pp. 69–76. IEEE (2007)

    Google Scholar 

  33. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. Computer Science (2014)

    Google Scholar 

  34. Zhang, K., Schölkopf, B., Muandet, K., Wang, Z.: Domain adaptation under target and conditional shift. In: International Conference on Machine Learning, pp. 819–827 (2013)

    Google Scholar 

Download references

Acknowledgment

This paper was partially financially supported by National Natural Science Foundation of China under grants 61533012, 91748120 and 61521063.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuhong Wei , Yefei Chen or Jianbo Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, X., Chen, Y., Su, J. (2018). Domain Adaptation via Identical Distribution Across Models and Tasks. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11301. Springer, Cham. https://doi.org/10.1007/978-3-030-04167-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04167-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04166-3

  • Online ISBN: 978-3-030-04167-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics