Skip to main content

Incremental Stability of Neural Networks with Switched Parameters and Time Delays via Contraction Theory of Multiple Norms

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11302))

Included in the following conference series:

  • 2185 Accesses

Abstract

In this paper, we propose a new approach to investigate the incrementally exponentially asymptotically stability and contraction property of the switched recurrently connected neural networks with time-varying delays. This method of contraction theory extends the current result from ordinary differential systems to delayed differential systems. Thus, we derive sufficient conditions of incremental stability of a class of neural networks with time-varying parameters and time-delays and its asymptotical periodicity as a consequence when the time-variation is periodic. Numerical examples are presented to illustrate the power of theoretical results.

This work is jointly supported by the National Natural Sciences Foundation of China under Grant No. 61673119.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleksander, I., Morton, H.: An Introduction to Neural Computing. Chapman and Hall, London (1990)

    Google Scholar 

  2. Angeli, D.: A lyapunov approach to incremental stability properties. IEEE Trans. Autom. Control 47(3), 410–421 (2002)

    Article  MathSciNet  Google Scholar 

  3. Arik, S., Tavsanoglu, V.: On the global asymptotic stability of delayed cellular neural networks. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47(4), 571–574 (2000)

    Article  MathSciNet  Google Scholar 

  4. di Bernardo, M., Liuzza, D., Russo, G.: Contraction analysis for a class of nondifferentiable systems with applications to stability and network synchronization. SIAM J. Control Optim. 52(5), 3203–3227 (2014)

    Article  MathSciNet  Google Scholar 

  5. Chen, T., Amari, S.I.: Exponential convergence of delayed dynamical systems. Neural Comput. 13(3), 621–635 (2001)

    Article  Google Scholar 

  6. Chen, T., Lu, W., Chen, G.: Dynamical behaviors of a large class of general delayed neural networks. Neural Comput. 17(4), 949–968 (2005)

    Article  MathSciNet  Google Scholar 

  7. Chen, T., Chen, H., Liu, R.: A constructive proof and an extension of Cybenko’s approximation theorem. In: Page, C., LePage, R. (eds.) Computing Science and Statistics. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-2856-1_21

    Chapter  Google Scholar 

  8. Chen, T.: Global exponential stability of delayed hopfield neural networks. Neural Netw. 14(8), 977–980 (2001)

    Article  Google Scholar 

  9. Chen, T., Chen, H.: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans. Neural Netw. 6(4), 911–917 (1995)

    Article  Google Scholar 

  10. Chen, T., Lu, W.: Stability analysis of dynamical neural networks. In: Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, vol. 1, pp. 112–116 (Dec 2003)

    Google Scholar 

  11. Chua, L.O.: Cellular neural network: applications. IEEE Trans. Circ. Syst. 35(10), 1273–1290 (1988)

    Article  MathSciNet  Google Scholar 

  12. Chua, L.O.: Cellular neural network: theory. IEEE Trans. Circ. Syst. 35, 1257–1272 (1988)

    Article  MathSciNet  Google Scholar 

  13. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2(4), 303–314 (1989)

    Article  MathSciNet  Google Scholar 

  14. Forni, F., Sepulchre, R.: A differential lyapunov framework for contraction analysis. IEEE Trans. Autom. Control 59(3), 614–628 (2014)

    Article  MathSciNet  Google Scholar 

  15. Gopalsamy, K., He, X.Z.: Stability in asymmetric hopfield nets with transmission delays. Physica D 76(4), 344–358 (1994)

    Article  MathSciNet  Google Scholar 

  16. Hecht-Nielsen, R.: Neurocomputing. Nature 359(6394) (1990)

    Google Scholar 

  17. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. U.S.A. 81(10), 3088–3092 (1984)

    Article  Google Scholar 

  18. Hopfield, J.J., Tank, D.W.: Computing with neural circuits: a model. Science 233(4764), 625–633 (1986)

    Article  Google Scholar 

  19. Lewis, D.C.: Metric properties of differential equations. Am. J. Math. 71(2), 294–312 (1949)

    Article  MathSciNet  Google Scholar 

  20. Liao, T.L., Wang, F.C.: Global stability for cellular neural networks with time delay. IEEE Trans. Neural Netw. 11(6), 1481–1484 (2000)

    Article  Google Scholar 

  21. Liu, Z., Liao, L.: Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays. J. Math. Anal. Appl. 290(1), 247–262 (2004)

    Article  MathSciNet  Google Scholar 

  22. Lohmiller, W., Slotine, J.J.E.: On contraction analysis for non-linear systems. Automatica 34(6), 683–696 (1998)

    Article  MathSciNet  Google Scholar 

  23. Lu, W., di Bernardo, M.: Contraction and incremental stability of switched carathéodory systems using multiple norms. Automatica 70, 1–8 (2016)

    Article  MathSciNet  Google Scholar 

  24. Lu, W., Rong, L., Chen, T.: Global convergence of delayed neural network systems. Int. J. Neural Syst. 13(03), 193–204 (2003). pMID: 12884452

    Article  Google Scholar 

  25. Russo, G., di Bernardo, M.: Contraction theory and master stability function: linking two approaches to study synchronization of complex networks. IEEE Trans. Circuits Syst. II Express Briefs 56(2), 177–181 (2009)

    Article  Google Scholar 

  26. Russo, G., di Bernardo, M., Slotine, J.J.E.: A graphical approach to prove contraction of nonlinear circuits and systems. IEEE Trans. Circuits Syst. I Regul. Pap. 58(2), 336–348 (2011)

    Article  MathSciNet  Google Scholar 

  27. Wenlian, L.U., Chen, T.: On periodic dynamical systems. Chin. Ann. Math. 25(4), 455–462 (2004)

    Article  MathSciNet  Google Scholar 

  28. Xu, Z.B., Kwong, C.P.: Global convergence and asymptotic stability of asymmetric hopfield neural networks. J. Math. Anal. Appl. 191(3), 405–427 (1995)

    Article  MathSciNet  Google Scholar 

  29. Zheng, Y., Chen, T.: Global exponential stability of delayed periodic dynamical systems. Phys. Lett. A 322(5), 344–355 (2004)

    Article  MathSciNet  Google Scholar 

  30. Zhou, J., Liu, Z., Chen, G.: Dynamics of periodic delayed neural networks. Neural Netw. 17(1), 87–101 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Qiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiang, H., Lu, W. (2018). Incremental Stability of Neural Networks with Switched Parameters and Time Delays via Contraction Theory of Multiple Norms. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11302. Springer, Cham. https://doi.org/10.1007/978-3-030-04179-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04179-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04178-6

  • Online ISBN: 978-3-030-04179-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics