Skip to main content

Computationally Efficient Radial Basis Function

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11302))

Included in the following conference series:

Abstract

We introduced a Square-law based RBF kernel called SQuare RBF (SQ-RBF) which is computationally efficient and effective due to the elimination of the exponential term. In contrast to the Gaussian RBF, SQ-RBF requires smaller computational operation count and direct implementation without a call to higher order library. The derivative of the SQ-RBF is linear which will improve gradient computation and makes its applicability in multilayer perceptron neural network attractive. In experiments, SQ-RBF lead not only to faster learning but also requires significant low neurons than Gaussian RBF on networks. On an average, we recorded a speed-up in training time of about 8% for SQ-RBF based networks without affecting the overall generalizability of the network. SQ-RBF uses about 10% fewer neurons than Gaussian RBF hence making it very attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jouppi, N.P., et al.: In-Datacenter performance analysis of a tensor processing unit. In: Proceedings of the 44th Annual International Symposium on Computer Architecture, pp. 1–12. ACM, New York (2017)

    Google Scholar 

  2. Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Syst. 2(3), 321–355 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Yojna, A., Singhal, A., Bansal, A.: A study of applications of RBF network. Int. J. Comput. Appl. 94(2), 17–20 (2014)

    Google Scholar 

  4. Matthias, R., Eskofier, B.M.: An approximation of the Gaussian RBF kernel for efficient classification with SVMs. Pattern Recognit. Lett. 84, 107–113 (2016)

    Article  Google Scholar 

  5. Xu, B., Shen, F., Zhao, J., Zhang, T.: A self-adaptive growing method for training compact RBF networks. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10634, pp. 74–81. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70087-8_8

    Chapter  Google Scholar 

  6. Reese, J., Zaranek, S.: GPU programming in MATLAB. MathWorks News and Notes, pp. 22–25 (2012)

    Google Scholar 

  7. Wuraola, A., Patel, N.: SQNL: a new computationally efficient activation function. IEEE International Joint Conference on Neural Network. IEEE (2018)

    Google Scholar 

  8. Duch, W., Jankowski, N.: Transfer functions: hidden possibilities for better neural networks. ESANN, pp. 81–94. De-facto, Brugge (2001)

    Google Scholar 

  9. Hoffmann, G.A.: Adaptive transfer functions in radial basis function (RBF) networks. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3037, pp. 682–686. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24687-9_102

    Chapter  Google Scholar 

  10. Meng, X., Rozycki, P., Qiao, J., Wilamowski, B.: Nonlinear system modeling using RBF networks for industrial application. IEEE Trans. Ind. Inform. 14(3), 931–940 (2018)

    Article  Google Scholar 

  11. Yanbing, L., Zhao, J., Xiao, Y.: C-RBFNN: a user retweet behavior prediction method for hotspot topics based on improved RBF neural network. Neurocomputing 275, 733–746 (2018)

    Article  Google Scholar 

  12. Włodzisław, D., Jankowski, N.: Survey of neural transfer functions. Neural Comput. Surv. 2(1), 163–212 (1999)

    Google Scholar 

  13. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: International Conference on Learning Representation (2016)

    Google Scholar 

  14. Lennart, L.: System Identification. Prentice-Hall, Boston (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adedamola Wuraola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wuraola, A., Patel, N. (2018). Computationally Efficient Radial Basis Function. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11302. Springer, Cham. https://doi.org/10.1007/978-3-030-04179-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04179-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04178-6

  • Online ISBN: 978-3-030-04179-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics