Abstract
The extraction of useful information from multi-sensors data requires fairly involved methodologies and algorithms. We propose an \(L_1\) regularized tensor decomposition to decrease learning sensitivities, coupled with an adaptive one-class support vector machine (OCSVM) for anomaly detection purposes. This new framework yields sparse and smooth representations of the desired outcomes. An automatic parameter selection method based on the euclidean metric is also proposed to adaptively tune the kernel parameter inherent in OCSVM. These positive characteristics of tensor analysis allow us to fuse data from multiple sensors and further analyze them at the same time at which informative features are being extracted. This work is challenging because it is cross disciplinary; and thus it requires coherency to the specific domain applications fundamentals (such as structural health monitoring), on the one hand, and its diversity on machine learning techniques on the other. Compared to the state-of-the-art approaches for learning tensor and anomaly detection, our proposed methods work well on experiments and show better performance in terms of decomposition quality and stability of the extracted features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations for incomplete data. Chemom. Intell. Lab. Syst. 106(1), 41–56 (2011)
Anaissi, A., Goyal, M., Catchpoole, D.R., Braytee, A., Kennedy, P.J.: Ensemble feature learning of genomic data using support vector machine. PloS One 11(6), e0157330 (2016)
Anaissi, A., Kennedy, P.J., Goyal, M., Catchpoole, D.R.: A balanced iterative random forest for gene selection from microarray data. BMC Bioinform. 14(1), 261 (2013)
Anaissi, A., et al.: Adaptive one-class support vector machine for damage detection in structural health monitoring. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp. 42–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7_4
Bader, B.W., Harshman, R.A., Kolda, T.G.: Temporal analysis of semantic graphs using ASALSAN. In: Seventh IEEE International Conference on Data Mining, ICDM 2007, pp. 33–42. IEEE (2007)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Bro, R., Kiers, H.A.: A new efficient method for determining the number of components in parafac models. J. Chemom. 17(5), 274–286 (2003)
Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20(3), 273–297 (1995)
Eldén, L.: Perturbation theory for the least squares problem with linear equality constraints. SIAM J. Numer. Anal. 17(3), 338–350 (1980)
Farrar, C.R., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective. Wiley, Chichester (2012)
Ho, J.C., Ghosh, J., Sun, J.: Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 115–124. ACM (2014)
Khazai, S., Homayouni, S., Safari, A., Mojaradi, B.: Anomaly detection in hyperspectral images based on an adaptive support vector method. IEEE Geosci. Remote. Sens. Lett. 8(4), 646–650 (2011)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
Mahadevan, S., Shah, S.L.: Fault detection and diagnosis in process data using one-class support vector machines. J. Process. Control 19(10), 1627–1639 (2009)
Menon, A.K., Cai, C., Wang, W., Wen, T., Chen, F.: Fine-grained od estimation with automated zoning and sparsity regularisation. Transp. Res. Part B 80, 150–172 (2015)
Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Tensors for data mining and data fusion: Models, applications, and scalable algorithms. ACM Trans. Intell. Syst. Technol. (TIST) 8(2), 16 (2016)
Prada, M.A., Toivola, J., Kullaa, J., Hollmén, J.: Three-way analysis of structural health monitoring data. Neurocomputing 80, 119–128 (2012)
Ricci, S.: Best achievable modal eigenvectors in structural damage detection. Exp. Mech. 40(4), 425–429 (2000)
Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C., et al.: Support vector method for novelty detection. In: NIPS, vol. 12, pp. 582–588. Citeseer (1999)
Sun, J., Tao, D., Papadimitriou, S., Yu, P.S., Faloutsos, C.: Incremental tensor analysis: Theory and applications. ACM Trans. Knowl. Discov. Data (TKDD) 2(3), 11 (2008)
Worden, K., Manson, G.: The application of machine learning to structural health monitoring. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 365(1851), 515–537 (2007)
Xiao, Y., Wang, H., Xu, W.: Parameter selection of gaussian kernel for one-class SVM. IEEE Trans. Cybern. 45(5), 941–953 (2015)
Yin, S., Zhu, X., Jing, C.: Fault detection based on a robust one class support vector machine. Neurocomputing 145, 263–268 (2014)
Zhou, S., Vinh, N.X., Bailey, J., Jia, Y., Davidson, I.: Accelerating online CP decompositions for higher order tensors. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1375–1384. ACM (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Anaissi, A., Lee, Y., Naji, M. (2018). Regularized Tensor Learning with Adaptive One-Class Support Vector Machines. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11303. Springer, Cham. https://doi.org/10.1007/978-3-030-04182-3_54
Download citation
DOI: https://doi.org/10.1007/978-3-030-04182-3_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04181-6
Online ISBN: 978-3-030-04182-3
eBook Packages: Computer ScienceComputer Science (R0)