Skip to main content

A Strategical Path Planner for UGV-UAV Cooperation in Mars Terrains

  • Conference paper
  • First Online:
Artificial Intelligence XXXV (SGAI 2018)

Abstract

Mars exploration is an ongoing researching topic mainly due to the technological breakthroughs in robotic platforms. Space agencies as NASA, are considering future Mars explorations where multi-robot teams cooperate to maximize the scientific return. In this regard, we present a cooperative team formed by a Unmanned Aerial Vehicle (UAV) and a Unmanned Ground Vehicle (UGV) to autonomously perform a Mars exploration. We develop a strategical path planner to compute a route plan for the UGV-UAV team to reach all the target points of the exploration. The key problems that we have considered in Mars explorations for the UGV-UAV team are: the UAV energy constraints and the UGV functionality constraints. Our strategical path planner models the UGV as a moving charging station which will carry the UAV through secure locations close to the target points locations, and the UAV will visit the target points using the UGV as a recharging station. Our solution has been tested in several scenarios and the results demonstrate that our approach is able to carry out a coordinated plan in a local optimal mission time on a real Mars terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Trans. Robot. 21(3), 376–386 (2005)

    Article  Google Scholar 

  2. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954)

    MathSciNet  Google Scholar 

  3. Ergezer, H., Leblebiciolu, K.: 3D path planning for multiple UAVs for maximum information collection. J. Intell. Robot. Syst. 73(1–4), 737 (2014)

    Article  Google Scholar 

  4. Eriksen, C.C., et al.: Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng. 26(4), 424–436 (2001)

    Article  Google Scholar 

  5. Gori, F., Folino, G., Jetten, M.S., Marchiori, E.: MTR: taxonomic annotation of short metagenomic reads using clustering at multiple taxonomic ranks. Bioinformatics 27(2), 196–203 (2011)

    Article  Google Scholar 

  6. Grocholsky, B., Keller, J., Kumar, V., Pappas, G.: Cooperative air and ground surveillance. IEEE Robot. Autom. Mag. 13(3), 16–25 (2006)

    Article  Google Scholar 

  7. Guérin, F., Guinand, F., Brethé, J.F., Pelvillain, H., et al.: UAV-UGV cooperation for objects transportation in an industrial area. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 547–552. IEEE (2015)

    Google Scholar 

  8. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations, vol. 12. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  9. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  10. Hsieh, M.A., et al.: Adaptive teams of autonomous aerial and ground robots for situational awareness. J. Field Robot. 24(11–12), 991–1014 (2007)

    Article  Google Scholar 

  11. Kirk, J.: Traveling salesman problem-genetic algorithm. Retrieved from the MATLAB File Exchange website: www.mathworks.com/matlabcentral/fileexchange/13680-travelingsalesman-problem-genetic-algorithm (2007)

  12. Leahy, K., Zhou, D., Vasile, C.I., Oikonomopoulos, K., Schwager, M., Belta, C.: Persistent surveillance for unmanned aerial vehicles subject to charging and temporal logic constraints. Autonom. Robots 40(8), 1363–1378 (2016)

    Article  Google Scholar 

  13. Maini, P., Sujit, P.: On cooperation between a fuel constrained UAV and a refueling UGV for large scale mapping applications. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1370–1377. IEEE (2015)

    Google Scholar 

  14. Manyam, S.G., Casbeer, D.W., Sundar, K.: Path planning for cooperative routing of air-ground vehicles. In: 2016 American Control Conference (ACC), pp. 4630–4635. IEEE (2016)

    Google Scholar 

  15. Mitchell, D., Corah, M., Chakraborty, N., Sycara, K., Michael, N.: Multi-robot long-term persistent coverage with fuel constrained robots. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1093–1099. IEEE (2015)

    Google Scholar 

  16. Mueggler, E., Faessler, M., Fontana, F., Scaramuzza, D.: Aerial-guided navigation of a ground robot among movable obstacles. In: 2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–8. IEEE (2014)

    Google Scholar 

  17. Muñoz, P., R-Moreno, M.D., Castaño, B.: 3Dana: a path planning algorithm for surface robotics. Eng. Appl. Artif. Intell. 60, 175–192 (2017)

    Article  Google Scholar 

  18. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete Comput. Geom. 44(4), 883–895 (2010)

    Article  MathSciNet  Google Scholar 

  19. Sofman, B., Bagnell, J.A., Stentz, A., Vandapel, N.: Terrain classification from aerial data to support ground vehicle navigation (2006)

    Google Scholar 

  20. Suzuki, K.A., Kemper Filho, P., Morrison, J.R.: Automatic battery replacement system for UAVs: analysis and design. J. Intell. Robot. Syst. 65(1), 563–586 (2012)

    Article  Google Scholar 

  21. Swieringa, K.A., et al.: Autonomous battery swapping system for small-scale helicopters. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3335–3340. IEEE (2010)

    Google Scholar 

  22. Tian, J., Shen, L., Zheng, Y.: Genetic algorithm based approach for Multi-UAV cooperative reconnaissance mission planning problem. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 101–110. Springer, Heidelberg (2006). https://doi.org/10.1007/11875604_13

    Chapter  Google Scholar 

  23. Tokekar, P., Vander Hook, J., Mulla, D., Isler, V.: Sensor planning for a symbiotic UAV and UGV system for precision agriculture. IEEE Trans. Robot. 32(6), 1498–1511 (2016)

    Article  Google Scholar 

  24. Watson, D.F.: Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Comput. J. 24(2), 167–172 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors want to thank Dr. David F. Barrero for the fruitful discussions and his help to carry out the experiments. The work is supported by the UAH project 2016/00351/001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ropero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ropero, F., Muñoz, P., R-Moreno, M.D. (2018). A Strategical Path Planner for UGV-UAV Cooperation in Mars Terrains. In: Bramer, M., Petridis, M. (eds) Artificial Intelligence XXXV. SGAI 2018. Lecture Notes in Computer Science(), vol 11311. Springer, Cham. https://doi.org/10.1007/978-3-030-04191-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04191-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04190-8

  • Online ISBN: 978-3-030-04191-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics