Skip to main content

Prediction of Taxi Demand Based on ConvLSTM Neural Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11305))

Included in the following conference series:

Abstract

As an important part of the urban public transport system, taxi has been the essential transport option for city residents. The research on the prediction and analysis of taxi demand based on the taxi GPS data is one of the hot topics in transport recently, which is of great importance to increase the incomes of taxi drivers, reduce the time and distances of vacant driving and improve the quality of taxi operation and management. In this paper, we aim to predict the taxi demand based on the ConvLSTM network, which is able to deal with the spatial structural information effectively by the convolutional operation inside the LSTM cell. We also use the LSTM network in our experiment to implement the same prediction task. Then we compare the prediction performances of these two models. The results show that the ConvLSTM network outperforms LSTM network in predicting the taxi demand. Due to the ability of handling spatial information more accurately, the ConvLSTM can be used in many spatio-temporal sequence forecasting problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kong, X., Xu, Z., Shen, G., Wang, J., Yang, Q., Zhang, B.: Urban traffic congestion estimation and prediction based on floating car trajectory data. Future Gener. Comput. Syst. 61, 97–107 (2016)

    Article  Google Scholar 

  2. Zhang, D., et al.: Understanding taxi service strategies from taxi GPS traces. IEEE Trans. Intell. Transp. Syst. 16(1), 123–135 (2015)

    Article  Google Scholar 

  3. Yang, Q., Gao, Z., Kong, X., Rahim, A., Wang, J., Xia, F.: Taxi operation optimization based on big traffic data. In: Proceedings of 12th IEEE International Conference on Ubiquitous Intelligence and Computing, Beijing, China, pp. 127–134 (2015)

    Google Scholar 

  4. Zhao, K., Khryashchev, D., Freire, J., Silva, C., Vo, H.: Predicting taxi demand at high spatial resolution: approaching the limit of predictability. In: Proceedings of IEEE BigData, December 2016, pp. 833–842 (2016)

    Google Scholar 

  5. Li, X., et al.: Prediction of urban human mobility using large-scale taxi traces and its applications. Front. Comput. Sci. 6(1), 111–121 (2012)

    MathSciNet  Google Scholar 

  6. Kong, X., Xia, F., Wang, J., Rahim, A., Das, S.: Time-location-relationship combined service recommendation based on taxi trajectory data. IEEE Trans. Ind. Inform. 13(3), 1202–1212 (2017)

    Article  Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Xu, J., Rahmatizadeh, R., Boloni, L.: Real-time prediction of taxi demand using recurrent neural networks. IEEE Trans. Intell. Transp. Syst. 99(1), 1–10 (2017)

    Google Scholar 

  9. Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., Wong, W.-C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NIPS (2015)

    Google Scholar 

  10. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks, vol. 385. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2

    Book  MATH  Google Scholar 

  11. Kim, S., Hong, S., Joh, M., Song, S.-K.: DeepRain: ConvLSTM network for precipitation prediction using multichannel radar data. In: IWOCI, September 2017

    Google Scholar 

  12. NYC Taxi & Limousine Commission: Taxi and Limousine Commission (TLC) Trip Record Data. http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml. Accessed Dec 2016

  13. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.-Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)

    Google Scholar 

  14. Wikipedia. https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error. Accessed 20 May 2018

  15. Vanguard Software Homepage. http://www.vanguardsw.com/business-forecasting-101/symmetric-mean-absolute-percent-error-smape/. Accessed 20 May 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, P., Sun, M., Pang, M. (2018). Prediction of Taxi Demand Based on ConvLSTM Neural Network. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11305. Springer, Cham. https://doi.org/10.1007/978-3-030-04221-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04221-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04220-2

  • Online ISBN: 978-3-030-04221-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics