Skip to main content

The Replacement for Hypothesis Testing

  • Conference paper
  • First Online:
Structural Changes and their Econometric Modeling (TES 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 808))

Included in the following conference series:

Abstract

Classical hypothesis testing, whether with p-values or Bayes factors, leads to over-certainty, and produces the false idea that causes have been identified via statistical methods. The limitations and abuses of in particular p-values are so well known and by now so egregious, that a new method is badly in need. We propose returning to an old idea, making direct predictions by models of observables, assessing the value of evidence by the change in predictive ability, and then verifying the predictions against reality. The latter step is badly in need of implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Begley, C.G., Ioannidis, J.P.: Reproducibility in science: Improving the standard for basic and preclinical research. Circ. Res. 116, 116–126 (2015)

    Article  Google Scholar 

  • Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, New York (2000)

    MATH  Google Scholar 

  • Breiman, L.: Statistical modeling: the two cultures. Stat. Sci. 16(3), 199–215 (2001)

    Article  MathSciNet  Google Scholar 

  • Briggs, W.M.: On probability leakage. arxiv.org/abs/12013611 (2013)

  • Briggs, W.M.: Uncertainty: The Soul of Probability, Modeling & Statistics. Springer, New York (2016)

    Book  Google Scholar 

  • Briggs, W.M., Ruppert, D.: Assessing the skill of yes/no predictions. Biometrics 61(3), 799–807 (2005)

    Article  MathSciNet  Google Scholar 

  • Briggs, W.M., Zaretzki, R.A.: The skill plot: a graphical technique for evaluating continuous diagnostic tests. Biometrics 64, 250–263 (2008). (With discussion)

    Article  MathSciNet  Google Scholar 

  • Duhem, P.: The Aim and Structure of Physical Theory. Princeton University Press, Princeton (1954)

    Book  Google Scholar 

  • Fox, J., Weisberg, S.: An R Companion to Applied Regression, 2nd edn. SAGE Publications, Thousand Oaks (2011)

    Google Scholar 

  • Franklin, J.: Resurrecting logical probability. Erkenntnis 55, 277–305 (2001)

    Article  MathSciNet  Google Scholar 

  • Gigerenzer, G.: Mindless statistics. J. Socio Econ. 33, 587–606 (2004)

    Article  Google Scholar 

  • Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation. JASA 102, 359–378 (2007)

    Article  MathSciNet  Google Scholar 

  • Gneiting, T., Raftery, A.E., Balabdaoui, F.: Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. Ser. B Stat. Methodol. 69, 243–268 (2007)

    Article  MathSciNet  Google Scholar 

  • Hersbach, H.: Decompostion of the continuous ranked probability score for ensemble prediction systems. Weather Forecast. 15, 559–570 (2000)

    Article  Google Scholar 

  • Hitchcock, C.: Probabilistic causation. In: The Stanford Encyclopedia of Philosophy (Winter 2016 Edition) (2016). https://plato.stanford.edu/archives/win2016/entries/causation--probabilistic

  • Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  • Keynes, J.M.: A Treatise on Probability. Dover Phoenix Editions, Mineola (2004)

    MATH  Google Scholar 

  • Mulder, J., Wagenmakers, E.J.: Editor’s introduction to the special issue: Bayes factors for testing hypotheses in psychological research: Practical relevance and new developments. J. Math. Psychol. 72, 1–5 (2016)

    Article  MathSciNet  Google Scholar 

  • Nguyen, H.T.: On evidence measures of support for reasoning with integrated uncertainty: a lesson from the ban of p-values in statistical inference. In: Huynh, V.N., Inuiguchi, M., Le, B., Le, B., Denoeux, T. (eds.) Integrated Uncertainty in Knowledge Modelling and Decision Making, pp. 3–15. Springer, Cham (2016)

    Chapter  Google Scholar 

  • Nosek, B.A., Alter, G., Banks, G.C., et al.: Estimating the reproducibility of psychological science. Science 349, 1422–1425 (2015)

    Google Scholar 

  • Park, D.J., Berger, B.K.: Brand placement in movies: the effect of film genre on viewer recognition. J. Promot. Manag. 22, 428–444 (2010)

    Article  Google Scholar 

  • Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Quine, W.V.: Two Dogmas of Empiricism. Harper and Row, Harper Torchbooks, Evanston (1953)

    MATH  Google Scholar 

  • Trafimow, D.: The theory of reasoned action: a case study of falsification in psychology. Theory Psychol. 19, 501–518 (2009)

    Article  Google Scholar 

  • Trafimow, D.: Implications of an initial empirical victory for the truth of the theory and additional empirical victories. Philos. Psychol. 30(4), 411–433 (2017)

    Article  Google Scholar 

  • Trafimow, D., Marks, M.: Editorial. Basic Appl. Soc. Psychol. 37(1), 1–2 (2015)

    Article  MathSciNet  Google Scholar 

  • Wilks, D.S.: Statistical Methods in the Atmospheric Sciences, 2nd edn. Academic Press, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Briggs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Briggs, W.M., Nguyen, H.T., Trafimow, D. (2019). The Replacement for Hypothesis Testing. In: Kreinovich, V., Sriboonchitta, S. (eds) Structural Changes and their Econometric Modeling. TES 2019. Studies in Computational Intelligence, vol 808. Springer, Cham. https://doi.org/10.1007/978-3-030-04263-9_1

Download citation

Publish with us

Policies and ethics