Skip to main content

A Marker Passing Approach to Winograd Schemas

  • Conference paper
  • First Online:
Semantic Technology (JIST 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11341))

Included in the following conference series:

Abstract

This paper approaches a solution of Winograd Schemas with a marker passing algorithm which operates on an automatically generated semantic graph. The semantic graph contains common sense facts from data sources form the semantic web like domain ontologies e.g. from Linked Open Data (LOD), WordNet, Wikidata, and ConceptNet. Out of those facts, a semantic decomposition algorithm selects relevant facts for the concepts used in the Winograd Schema and adds them to the semantic graph. Markers are propagated through the graph and used to identify an answer to the Winograd Schema. Depending on the encoded knowledge in the graph (connectionist view of world knowledge) and the information encoded on the marker (for symbolic reasoning) our approach selects the answers. With this selection, the marker passing approach is able to beat the state-of-the-art approach by about 12%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strong AI (sometimes called full AI or hard AI) [14, p. 260] refers to a human level intelligence.

  2. 2.

    http://commonsensereasoning.org/winograd.html last visited on 30.07.2018.

  3. 3.

    git@gitlab.tubit.tu-berlin.de:johannes_faehndrich/semantic-decomposition.git for access please contact the author.

  4. 4.

    https://stanfordnlp.github.io/CoreNLP/ last visited 12.08.2018.

  5. 5.

    https://propbank.github.io/ last visited 12.08.2018.

  6. 6.

    https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.xml last visited 12.08.2018.

References

  1. Arenas, M., Grau, B.C., Kharlamov, E., Marciuška, Š., Zheleznyakov, D.: Faceted search over RDF-based knowledge graphs. Web. Semant.: Sci. Serv. Agents World Wide Web 37–38, 55–74 (2016). https://doi.org/10.1016/j.websem.2015.12.002. http://www.sciencedirect.com/science/article/pii/S1570826815001432

    Article  Google Scholar 

  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ISWC 2007, ASWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52. (Chapter 52)

    Chapter  Google Scholar 

  3. Austin, J.: Distributed associative memories for high-speed symbolic reasoning. Fuzzy Sets Syst. 82(2), 223–233 (1996). https://doi.org/10.1016/0165-0114(95)00258-8. http://eprints.whiterose.ac.uk/1871/1/austinj18.pdf

    Article  Google Scholar 

  4. Collins, A., Quillian, R.: Retrieval time from semantic memory. J. Verbal Learn. Verbal Behav. 8(2), 240–247 (1968). https://doi.org/10.1016/S0022-5371(69)80069-1. http://linkinghub.elsevier.com/retrieve/pii/S0022537169800691

    Article  Google Scholar 

  5. Crestani, F.: Application of spreading activation techniques in information retrieval. Artif. Intell. Rev. 11(6), 453–482 (1997). https://doi.org/10.1023/A:1006569829653

    Article  Google Scholar 

  6. Davis, E., Morgenstern, L., Ortiz, C.: The first Winograd schema challenge at IJCAI-16. AI Mag. 38(3), 97–98 (2017). https://doi.org/10.1609/aimag.v38i4.2734. https://dblp.org/rec/journals/aim/DavisMO17

    Article  Google Scholar 

  7. Ecke, A., Peñaloza, R., Turhan, A.Y.: Similarity-based relaxed instance queries. J. Appl. Logic 13(1), 480–508 (2015). https://doi.org/10.1016/j.jal.2015.01.002. http://www.sciencedirect.com/science/article/pii/S1570868315000038Workshop on Weighted Logics for AI - 2013

    Article  MathSciNet  MATH  Google Scholar 

  8. Emami, A., Trischler, A., Suleman, K., Cheung, J.C.K.: A generalized knowledge hunting framework for the Winograd schema challenge. In: NAACL-HLT (2018). https://dblp.org/rec/conf/naacl/EmamiTSC18

  9. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017). https://doi.org/10.1038/nature21056. http://www.nature.com/doifinder/10.1038/nature21056

    Article  Google Scholar 

  10. Fähndrich, J., Weber, S., Ahrndt, S.: Design and use of a semantic similarity measure for interoperability among agents. In: Klusch, M., Unland, R., Shehory, O., Pokahr, A., Ahrndt, S. (eds.) Multiagent System Technologies, vol. 9872, pp. 41–57. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45889-2_4

    Chapter  Google Scholar 

  11. Furbach, U., Schon, C.: Commonsense reasoning meets theorem proving. In: Klusch, M., Unland, R., Shehory, O., Pokahr, A., Ahrndt, S. (eds.) Multiagent System Technologies. LNCS, vol. 9872, pp. 3–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45889-2_1

    Chapter  Google Scholar 

  12. Ghallab, M., Nau, D., Traverso, P.: The actor’s view of automated planning and acting: a position paper. Artif. Intell. 208, 1–17 (2014). https://doi.org/10.1016/j.artint.2013.11.002. http://linkinghub.elsevier.com/retrieve/pii/S0004370213001173

    Article  Google Scholar 

  13. Jones, M.N., Willits, J., Dennis, S.: Models of Semantic Memory, Models of Semantic Memory, vol. 1. Oxford University Press, Oxford (2015). https://doi.org/10.1093/oxfordhb/9780199957996.013.11

    Book  Google Scholar 

  14. Kurzweil, R.: The Singularity is Near. Gerald Duckworth & Co, London (2005)

    Google Scholar 

  15. Lecue, F.: Applying machine reasoning and learning in real world applications. In: Pan, J.Z., et al. (eds.) Reasoning Web 2016. LNCS, vol. 9885, pp. 241–257. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49493-7_7

    Chapter  Google Scholar 

  16. Levesque, H., Davis, E., Morgenstern, L.: The Winograd schema challenge. In: Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning, vol. 46, pp. 552–561 (2011)

    Google Scholar 

  17. Liu, Q., Jiang, H., Ling, Z.H., Zhu, X., Wei, S., Hu, Y.: Combing context and commonsense knowledge through neural networks for solving Winograd schema problems. Assoc. Adv. Artif. Intell. (2017). http://dblp.org/rec/journals/corr/LiuJLZWH16

  18. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: ACL (2014). http://dblp.org/rec/conf/acl/ManningSBFBM14

  19. Morgenstern, L., Davis, E., Ortiz Jr, C.: Planning, executing, and evaluating the Winograd schema challenge. AI Mag. (2016). https://dblp.org/rec/journals/aim/MorgensternDO16

  20. Neely, J.H.: Semantic priming and retrieval from lexical memory: roles of inhibitionless spreading activation and limited-capacity attention. J. Exp. Psychol.: Gen. 106(3), 226–254 (1977)

    Article  Google Scholar 

  21. Pace-Sigge, M.: Spreading Activation Lexical Priming and the Semantic Web. Early Psycholinguistic Theories, Corpus Linguistics and AI Applications. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90719-2

    Book  Google Scholar 

  22. Peng, H., Khashabi, D., Roth, D.: Solving hard coreference problems. In: Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2015). http://dblp.org/rec/conf/naacl/PengKR15

  23. Rahman, A., Ng, V.: Resolving complex cases of definite pronouns: the Winograd schema challenge. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 777–789 (2012)

    Google Scholar 

  24. Richard-Bollans, A., Álvarez, L.G., Cohn, A.G.: The role of pragmatics in solving the Winograd schema challenge. In: COMMONSENSE (2017). https://dblp.org/rec/conf/commonsense/Richard-Bollans17

  25. Searle, J.: Minds, brains, and programs. Behav. Brain Sci. 3(3), 417–424 (1980). https://doi.org/10.1017/S0140525X00005756. http://www.journals.cambridge.org/abstract_S0140525X00005756

    Article  Google Scholar 

  26. Sharma, A., Vo, N.H., Aditya, S., Baral, C.: Towards addressing the Winograd schema challenge-building and using a semantic parser and a knowledge hunting module. In: International Joint Conference on Artificial Intelligence, pp. 1319–1325 (2015)

    Google Scholar 

  27. Shastri, L., Ajjanagadde, V.: From simple associations to systematic reasoning: a connectionist representation of rules, variables and dynamic bindings using temporal synchrony. Behav. Brain Sci. 16(03), 417–451 (2010). https://doi.org/10.1017/S0140525X00030910. http://www.journals.cambridge.org/abstract_S0140525X00030910

    Article  Google Scholar 

  28. Smith, E., Shoben, E., Rips, L.: Structure and process in semantic memory: a featural model for semantic decisions. Psychol. Rev. 81(3), 214–241 (1974). https://doi.org/10.1037/h0036351

    Article  Google Scholar 

  29. Sun, R.: A connectionist model for commonsense reasoning incorporating rules and similarities. Knowl. Acquis. 4(3), 293–321 (1992). https://doi.org/10.1016/1042-8143(92)90020-2

    Article  Google Scholar 

  30. Wang, F.Y., et al.: Where does AlphaGo go: from church-turing thesis to AlphaGo thesis and beyond. IEEE/CAA J. Autom. Sin. 3(2), 113–120 (2016). https://doi.org/10.1109/JAS.2016.7471613

    Article  Google Scholar 

  31. de Winter, J., Dodou, D.: Why the Fitts list has persisted throughout the history of function allocation. Cognit. Technol. Work. 16, 1–11 (2014). https://doi.org/10.1007/s10111-011-0188-1. http://dx.doi.org/10.1007/s10111-011-0188-1

    Article  Google Scholar 

  32. Yamaguchi, A., Kozaki, K., Yamamoto, Y., Masuya, H., Kobayashi, N.: Semantic graph analysis for federated LOD surfing in life sciences. JIST 10675(5), 268–276 (2017). https://doi.org/10.1007/978-3-319-70682-5-18

    Article  Google Scholar 

  33. Yampolskiy, R.: AI-complete, AI-hard, or AI-easy - classification of problems in AI. In: Twenty-third Midwest Artificial Intelligence and Cognitive Science Conference, pp. 94–101 (2012). http://ceur-ws.org/Vol-841/submission_3.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Fähndrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fähndrich, J., Weber, S., Kanthak, H. (2018). A Marker Passing Approach to Winograd Schemas. In: Ichise, R., Lecue, F., Kawamura, T., Zhao, D., Muggleton, S., Kozaki, K. (eds) Semantic Technology. JIST 2018. Lecture Notes in Computer Science(), vol 11341. Springer, Cham. https://doi.org/10.1007/978-3-030-04284-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04284-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04283-7

  • Online ISBN: 978-3-030-04284-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics