Skip to main content

RMSHI Solutions for Electromagnetic Transducers from Environmental Vibration

  • Conference paper
  • First Online:
Sensors (CNS 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 539))

Included in the following conference series:

  • 1199 Accesses

Abstract

The demand for harvesting energy from ambient has increased due to the advancement in the field of smart autonomous systems where a self-power source is needed. Kinetic vibration presents one of the main interesting and available source in the environment. However, to store energy from such source, different design requirements should be achieved considering the environmental vibration properties (hundreds of Hz and at low vibration levels, less than few m/s2). It should be also noted that only hundreds of mV can be generated from vibration converters. In this work, an energy harvester system based on an electromagnetic converter and a passive energy management circuit based on the Random Mechanical Switching Harvester on Inductor (RMSHI) architecture are developed. Results show that also in presence of a generated voltage less than 100 mV, it is possible to store the energy inside a load capacitor. Further, the use of the proposed approach, based on mechanical and passive switch, enables to improve significantly the voltage outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi, M., Sui, Y., Lee, I.H., Meredith, R., Ma, Y., Kim, G., Li, T.: Autonomous microsystems for downhole applications: design challenges, current state, and initial test results. Sensors 17(10), 2190 (2017)

    Article  Google Scholar 

  2. Kazmierski, T.J., Beeby, S.: Energy Harvesting Systems. Springer (2014)

    Google Scholar 

  3. Huesgen, T., Woias, P., Kockmann, N.: Design and fabrication of MEMS thermoelectric generators with high temperature efficiency. Sens. Actuators A 145–146, 423–429 (2008)

    Article  Google Scholar 

  4. Kim, D., Song, H., Khalil, H., Lee, J., Wang, S., Park, K.: 3-D vibration measurement using a single laser scanning vibrometer by moving to three different locations. IEEE Trans. Instrum. Meas. 63(8) (2014)

    Article  Google Scholar 

  5. Viehweger, C., Hartmann, B., Keutel, T., Kanoun, O.: Simulation of shading effects on the power output of solar modules for enhanced efficiency in photovoltaic energy generation. In: 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, pp. 610–613 (2014)

    Google Scholar 

  6. Zhu, D.: Sustainable Energy Harvesting Technologies—Past, Present and Future. INTECH, pp. 25 (2011)

    Google Scholar 

  7. Trigona, C., Dumas, N., Latorre, L., Andò, B., Baglio, S., Nouet, P.: Exploiting benefits of a periodically-forced nonlinear oscillator for energy harvesting from ambient vibrations. Procedia Eng. 25, 819–822 (2011)

    Article  Google Scholar 

  8. Andò, B., Baglio, S., Trigona, C.: Autonomous sensors: from standard to advanced solutions. IEEE Instrum. Meas. Mag. 13(3), 33–37 (2010)

    Article  Google Scholar 

  9. Maiorca, F., Giusa, F., Trigona, C., Andò, B., Bulsara, A.R., Baglio, S.: Diode-less mechanical H-bridge rectifier for “zero threshold” vibration energy harvesters. Sens. Actuators A 201, 246–253 (2013)

    Article  Google Scholar 

  10. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials. Smart Mater. Struct. 16, 1–21 (2007)

    Article  Google Scholar 

  11. Bradai, S., Naifar, S., Viehweger, C., Kanoun, O.: Electromagnetic vibration energy harvesting for railway applications. In: MATEC Web Conference, International Conference on Engineering Vibration (ICoEV 2017), vol. 148, pp. 12004 (2018)

    Article  Google Scholar 

  12. Bradai, S., Naifar, S., Viehweger, C., Kanoun, O.: Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation. Meas. J. 106, 251–263 (2017)

    Article  Google Scholar 

  13. Naifar, S., Bradai, S., Keutel, T., Kanoun, O.: Design of a vibration energy harvester by twin lateral magnetoelectric transducers. In: IEEE International Instrumentation and Measurement Technology Conference I2MTC, pp. 1157–1162 (2014)

    Google Scholar 

  14. Naifar, S., Bradai, S., Viehweger, C., Kanoun, O., Litak, G.: Response analysis of a nonlinear magnetoelectric energy harvester under harmonic excitation. Eur. Phys. J. Spec. Top. 224(14), 2897–2907 (2015)

    Article  Google Scholar 

  15. Bian, J., Wang, N., Ma, J., Jie, Y., Zou, J., Cao, X.: Stretchable 3D polymer for simultaneously mechanical energy harvesting and biomimetic force sensing. Nano Energy 47, 442–450 (2018)

    Article  Google Scholar 

  16. Bradai, S., Naifar, S., Keutel, T., Kanoun, O.: Electrodynamic resonant energy harvester for low frequencies and amplitudes. In: IEEE International Instrumentation and Measurement Technology Conference I2MTC, pp. 1152–1156 (2014)

    Google Scholar 

  17. Wu, L., Do, X.D., Lee, S.G., Ha, D.S.: A self-powered and optimal SSHI circuit integrated with an active rectifier for piezoelectric energy harvesting. IEEE Trans. Circuits Syst. I Regul. Pap. 64(3), 537–549 (2017)

    Article  Google Scholar 

  18. Giusa, F., Giuffrida, A., Trigona, C., Andò, B., Bulsara, A.R., Baglio, S.: Random mechanical switching harvesting on inductor: a novel approach to collect and store energy from weak random vibrations with zero voltage threshold. Sens. Actuators A 198, 35–45 (2013)

    Article  Google Scholar 

  19. Tsai, T.H., Chen, K.: A 3.4 mW photovoltaic energy-harvesting charger with integrated maximum power point tracking and battery management. In: 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 72–73 (2013)

    Google Scholar 

  20. Porcarelli, D., Donati, I., Nehani, J., Brunelli, D., Magno, M., Benini, L.: Design and implementation of a multi sensors self sustainable wearable device. In: 2014 6th European Embedded Design in Education and Research Conference (EDERC), pp. 16–20 (2014)

    Google Scholar 

  21. Yuan, T., Duraisamy, B., Schwarz, T., Fritzsche, M.: Track fusion with incomplete information for automotive smart sensor systems. In: IEEE Radar Conference, RadarConf, pp. 1–4 (2016)

    Google Scholar 

  22. Cho, S., Spencer, B.F.: Sensor attitude correction of wireless sensor network for acceleration-based monitoring of civil structures. Comput.-Aided Civ. Infrastruct. Eng. 30(11), 859–871 (2015)

    Article  Google Scholar 

  23. Catarinucci, L., De Donno, D., Mainetti, L., Palano, L., Patrono, L., Stefanizzi, M.L., Tarricone, L.: An IoT-aware architecture for smart healthcare systems. IEEE Internet Things J. 2(6), 515–526 (2015)

    Article  Google Scholar 

  24. Andò, B., Baglio, S., L’Episcopo, G., Marletta, V., Savalli, N., Trigona, C.: A BE-SOI MEMS for inertial measurement in geophysical applications. Trans. Instrum. Meas. 60(5), 1901–1908 (2011)

    Article  Google Scholar 

  25. Fan, P.M.Y., Wong, O.Y., Chung, M.J., Su, T.Y., Zhang, X., Chen, P.H.: Energy harvesting techniques: energy sources, power management and conversion. In: 2015 European Conference on Circuit Theory and Design (ECCTD), pp. 1–4 (2015)

    Google Scholar 

  26. Zhu, D., Beeby, S.: Energy Harvesting Systems: Principles, Modeling and Applications, pp. 1–78. Springer (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Trigona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bradai, S., Trigona, C., Naifar, S., Baglio, S., Kanoun, O. (2019). RMSHI Solutions for Electromagnetic Transducers from Environmental Vibration. In: Andò, B., et al. Sensors. CNS 2018. Lecture Notes in Electrical Engineering, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-030-04324-7_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04324-7_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04323-0

  • Online ISBN: 978-3-030-04324-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics