Skip to main content

Learning 3DMM Deformation Coefficients for Rendering Realistic Expression Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11010))

Abstract

Analysis of facial expressions is a task of increasing interest in Computer Vision, with many potential applications. However, collecting images with labeled expression for many subjects is a quite complicated operation. In this paper, we propose a solution that use a particular 3D morphable model (3DMM) that, starting from a neutral image of a target subject, is capable of producing a realistic expressive face image of the same subject. This is possible thanks to the fact the used 3DMM can effectively and efficiently fit to 2D images, and then deform itself under the action of deformation parameters that are learned expression-by-expression in a subject-independent manner. Ultimately, the application of such deformation parameters to the neutral model of a subject allows the rendering of realistic expressive images of the subject. In the experiments, we demonstrate that such deformation parameters can be learned even from a small set of training data using simple statistical tools; despite this simplicity, we show that very realistic subject-dependent expression renderings can be obtained with our method. Furthermore, robustness to cross dataset tests is also evidenced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: IEEE International Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, pp. 1–8, June 2007

    Google Scholar 

  2. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: ACM Conference on Computer Graphics and Interactive Techniques (1999)

    Google Scholar 

  3. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)

    Article  Google Scholar 

  4. Booth, J., Antonakos, E., Ploumpis, S., Trigeorgis, G., Panagakis, Y., Zafeiriou, S.: 3D face morphable models “in-the-wild”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5464–5473, July 2017. https://doi.org/10.1109/CVPR.2017.580

  5. Booth, J., Roussos, A., Zafeiriou, S., Ponniahand, A., Dunaway, D.: A 3D morphable model learnt from 10,000 faces. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5543–5552 (2016)

    Google Scholar 

  6. Cosker, D., Krumhuber, E., Hilton, A.: Perception of linear and nonlinear motion properties using a FACS validated 3D facial model. In: ACM Applied Perception in Graphics and Vision (2010)

    Google Scholar 

  7. Cosker, D., Krumhuber, E., Hilton, A.: A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling. In: International Conference on Computer Vision (2011)

    Google Scholar 

  8. Cosker, D., Krumhuber, E., Hilton, A.: Perceived emotionality of linear and non-linear AUs synthesised using a 3D dynamic morphable facial model. In: Proceedings of the Facial Analysis and Animation, FAA 2015, p. 7:1. ACM (2015)

    Google Scholar 

  9. Dou, P., Shah, S.K., Kakadiaris, I.A.: End-to-end 3D face reconstruction with deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1503–1512, July 2017. https://doi.org/10.1109/CVPR.2017.164

  10. Ekman, P.: Facial expression and emotion. Am. Anthropol. 48(4), 384–392 (1992)

    Google Scholar 

  11. Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto, CA (1978)

    Google Scholar 

  12. Ferrari, C., Lisanti, G., Berretti, S., Del Bimbo, A.: A dictionary learning-based 3D morphable shape model. IEEE Trans. Multimedia 19(12), 2666–2679 (2017). https://doi.org/10.1109/TMM.2017.2707341

    Article  Google Scholar 

  13. Hu, G., et al.: Face recognition using a unified 3D morphable model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 73–89. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_5

    Chapter  Google Scholar 

  14. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report 07-49, University of Massachusetts, Amherst, October 2007

    Google Scholar 

  15. Huang, Y., Khan, S.M.: DyadGAN: generating facial expressions in dyadic interactions. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2259–2266, July 2017. https://doi.org/10.1109/CVPRW.2017.280

  16. Huber, P., Kopp, P., Rätsch, M., Christmas, W.J., Kittler, J.: 3D face tracking and texture fusion in the wild. CoRR abs/1605.06764 (2016). http://arxiv.org/abs/1605.06764

  17. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  18. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: IEEE Conference on Computer Vision and Pattern Recognition-Workshops (2010)

    Google Scholar 

  19. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: International Conference on Machine Learning (2009)

    Google Scholar 

  20. Masi, I., Ferrari, C., Del Bimbo, A., Medioni, G.: Pose independent face recognition by localizing local binary patterns via deformation components. In: International Conference on Pattern Recognition (2014)

    Google Scholar 

  21. Patel, A., Smith, W.A.P.: 3D morphable face models revisited. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  22. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 296–301 (2009)

    Google Scholar 

  23. Qiao, F., Yao, N., Jiao, Z., Li, Z., Chen, H., Wang, H.: Geometry-contrastive generative adversarial network for facial expression synthesis. CoRR abs/1802.01822 (2018). http://arxiv.org/abs/1802.01822

  24. Ramanathan, S., Kassim, A., Venkatesh, Y.V., Wah, W.S.: Human facial expression recognition using a 3D morphable model. In: International Conference on Image Processing (2006)

    Google Scholar 

  25. Romdhani, S., Vetter, T.: Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior. In: IEEE Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  26. Savran, A., et al.: Bosphorus database for 3D face analysis. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BioID 2008. LNCS, vol. 5372, pp. 47–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89991-4_6

    Chapter  Google Scholar 

  27. Tran, A.T., Hassner, T., Masi, I., Medioni, G.: Regressing robust and discriminative 3D morphable models with a very deep neural network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5163–5172, July 2017

    Google Scholar 

  28. Ujir, H., Spann, M.: Facial expression recognition using FAPs-based 3DMMM. In: Tavares, J., Natal Jorge, R. (eds.) Topics in Medical Image Processing and Computational Vision. LNCVB, vol. 8, pp. 33–47. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-0726-9_2

    Chapter  Google Scholar 

  29. Yi, D., Lei, Z., Li, S.Z.: Towards pose robust face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  30. Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.: A 3D facial expression database for facial behavior research. In: IEEE International Conference on Automatic Face and Gesture Recognition (2006)

    Google Scholar 

  31. Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3D solution. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Ferrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferrari, C., Berretti, S., Pala, P., Del Bimbo, A. (2018). Learning 3DMM Deformation Coefficients for Rendering Realistic Expression Images. In: Basu, A., Berretti, S. (eds) Smart Multimedia. ICSM 2018. Lecture Notes in Computer Science(), vol 11010. Springer, Cham. https://doi.org/10.1007/978-3-030-04375-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04375-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04374-2

  • Online ISBN: 978-3-030-04375-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics