Skip to main content

A Bicriteria Approximation Algorithm for Minimum Submodular Cost Partial Multi-Cover Problem

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2018)

Abstract

This paper presents a bicriteria approximation algorithm for the minimum submodular cost partial multi-cover problem (SCPMC), the goal of which is to find a minimum cost sub-collection of sets to fully cover q percentage of total profit of all elements, where the cost on sub-collections is a submodular function, and an element e with covering requirement \(r_e\) is fully covered if it belongs to at least \(r_e\) picked sets. Such a problem occurs naturally in a social network influence problem.

Assuming that the maximum covering requirement \(r_{\max }=\max _e r_e\) is a constant and the cost function is nonnegative, monotone non-decreasing, and submodular, we give the first \((O(b/q\varepsilon ),(1-\varepsilon ))\)-bicriteria algorithm for SCPMC, the output of which fully covers at least \((1-\varepsilon )q\)-percentage of the total profit of all elements and the performance ratio is \(O(b/q\varepsilon )\), where \(b=\max _e\left( {\begin{array}{c}f_e\\ r_{e}\end{array}}\right) \) and \(f_e\) is the number of sets containing element e. In the case \(r\equiv 1\), an \((O(f/q\varepsilon ),1-\varepsilon )\)-bicriteria solution can be achieved even when monotonicity requirement is dropped off from the cost function, where f is the maximum number of sets containing a common element.

Supported by NSFC (11771013, 11531011, 61751303) and Major projects of Zhejiang Science Foundation (D19A010003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. J. Algorithms 39(2), 137–144 (2001)

    Article  MathSciNet  Google Scholar 

  2. Berman, P., DasGupta, B., Sontag, E.: Randomized approximation algorithms for set multicover problems with applications to reverse engineering of protein and gene networks. Discret. Appl. Math. 155(6–7), 733–749 (2007)

    Article  MathSciNet  Google Scholar 

  3. Chekuri, C., Ene, A.: Submodular cost allocation problem and applications. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 354–366. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_30

    Chapter  MATH  Google Scholar 

  4. Chekuri, C., Quanrud, K.: On approximating (sparse) covering integer programs. ArXiv:1807.11538 [cs.DS]

  5. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC 2014, pp. 624–633. ACM, New York (2014)

    Google Scholar 

  6. Chen, A., Harris, D.G., Srinivasan, A.: Partial resampling to approximate covering integer programs. In: Proceedings of 27th ACM-SIAM SODA, pp. 1984–2003 (2016)

    Google Scholar 

  7. Chen, N.: On the approximability of influence in social networks. SIAM J. Discret. Math. 23(3), 1400–1415 (2009)

    Article  MathSciNet  Google Scholar 

  8. Chlamtác̆, E., Dinitz, M., Makarychev, Y.: Minimizing the union: tight approximations for small set bipartite vertex expansion. In: SODA 2017, pp. 881–899. SIAM, Philadelphia (2017)

    Google Scholar 

  9. Chvatal, V.: A greedy heuristic for the set covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MathSciNet  Google Scholar 

  10. Dobson, G.: Worst-case analysis of greedy heuristics for integer program with nonnegative data. Math. Oper. Res. 7(4), 515–531 (1982)

    Article  MathSciNet  Google Scholar 

  11. Dinitz, M., Gupta, A.: Packing interdiction and partial covering problems. In: Goemans, M., Correa, J. (eds.) Integer Programming and Combinatorial Optimization IPCO 2013. LNCS, vol. 7801. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36694-9_14

    Chapter  Google Scholar 

  12. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)

    Article  MathSciNet  Google Scholar 

  13. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems. SIAM J. Comput. 11(3), 555–556 (1982)

    Article  MathSciNet  Google Scholar 

  14. Iwata, S., Nagano, K.: Submodular function minimization under covering constraints. In: FOCS 2009, pp. 671–680. IEEE Computer Society (2009)

    Google Scholar 

  15. Iyer, R.K., Bilmes, J.A.: Submodular optimization with submodular cover and submodular knapsack constraints. Adv. Neural Inf. Process. Syst. 26, 2436–2444 (2013)

    Google Scholar 

  16. Iyer, R.K., Jegelka, S., Bilmes, J.A.: Monotone closure of relaxed constraints in submodular optimization: connections between minimization and maximization. In: Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pp. 360–369 (2014)

    Google Scholar 

  17. Johnson, D.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)

    Article  MathSciNet  Google Scholar 

  18. Kamiyama, N.: A note on submodular function minimization with covering type linear constraints. Algorithmica 80(10), 2957–2971 (2018)

    Article  MathSciNet  Google Scholar 

  19. Kamiyama, N.: Submodular function minimization under a submodular set covering constraint. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20877-5_14

    Chapter  MATH  Google Scholar 

  20. Kearns, M.: The Computational Complexity of Machine Learning. MIT Press, Cambridge (1990)

    Google Scholar 

  21. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within \(2-\varepsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MathSciNet  Google Scholar 

  22. Konemann, J., Parekh, O., Segev, D.: A uinifed approach to approximating partial covering problems. Algorithmica 59(4), 489–509 (2011)

    Article  MathSciNet  Google Scholar 

  23. Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing integer programs. J. Comput. Syst. Sci. 71(4), 495–505 (2005). Preliminary version in FOCS (2001)

    Article  MathSciNet  Google Scholar 

  24. Koufogiannakis, C., Young, N.: Greedy \(\Delta \)-approximation algorithm for covering with arbitrary constraints and submodular cost. Algorithmica 66(1), 113–152 (2013)

    Article  MathSciNet  Google Scholar 

  25. Lovász, L.: Submodular functions and convexity. In: Bachem, A., Korte, B., Grötschel, M. (eds.) Mathematical Programming the State of the Art. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-68874-4_10

    Chapter  Google Scholar 

  26. Lovász, L.: On the ratio of the optimal integral and fractional covers. Discret. Math. 13(4), 383–390 (1975)

    Article  MathSciNet  Google Scholar 

  27. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis. The Press Syndicate of the University of Cambridge, Cambridge (2005)

    Book  Google Scholar 

  28. Rajagopalan, S., Vazirani, V.: Primal-dual RNC approximation algorithms for set cover and covering integer programs. SIAM J. Comput. 28(2), 525–540 (1998)

    Article  MathSciNet  Google Scholar 

  29. Ran, Y., Zhang, Z., Du, H., Zhu, Y.: Approximation algorithm for partial positive influence problem in social network. J. Comb. Optim. 33(2), 791–802 (2017)

    Article  MathSciNet  Google Scholar 

  30. Ran, Y., Shi, Y., Zhang, Z.: Local ratio method on partial set multi-cover. J. Comb. Optim. 34(1), 302–313 (2017)

    Article  MathSciNet  Google Scholar 

  31. Slavík, P.: Improved performance of the greedy algorithm for partial cover. Inf. Process. Lett. 64(5), 251–254 (1997)

    Article  MathSciNet  Google Scholar 

  32. Srinivasan, A.: An extension of the Lovsz local lemma, and its applications to integer programming. SIAM J. Comput. 36(3), 609–634 (2006)

    Article  MathSciNet  Google Scholar 

  33. Shi, Y., Zhang, Z., Du, D.-Z.: Randomized bicriteria approximation algorithm for minimum submodular cost partial multi-cover problem. https://arxiv.org/abs/1701.05339

  34. Shor, N.Z.: Cut-off method with space extension in convex programming problems. Cybern. Syst. Anal. 13(1), 94–96 (1977)

    Google Scholar 

  35. Wang, F., et al.: On positive influence dominating sets in social networks. Theor. Comput. Sci. 412, 265–269 (2011)

    Article  MathSciNet  Google Scholar 

  36. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Y., Zhang, Z., Du, DZ. (2018). A Bicriteria Approximation Algorithm for Minimum Submodular Cost Partial Multi-Cover Problem. In: Tang, S., Du, DZ., Woodruff, D., Butenko, S. (eds) Algorithmic Aspects in Information and Management. AAIM 2018. Lecture Notes in Computer Science(), vol 11343. Springer, Cham. https://doi.org/10.1007/978-3-030-04618-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04618-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04617-0

  • Online ISBN: 978-3-030-04618-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics