Skip to main content

A Decentralized Deterministic Information Propagation Model for Robust Communication

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11280))

Included in the following conference series:

Abstract

Many of the methods that are used to optimize network structure for information sharing are centralized, which is not always desirable in practice. Often, it is only feasible to have the communicating actors modify the network locally, i.e., without relying on the knowledge of the entire network structure. Such a requirement typically arises in establishing communication between actors (e.g., Unmanned Aerial Vehicles) that either do not have access to a central hub or prefer not to use this direct transmission channel even if available. This paper adopts an actor-oriented modeling approach to develop the Decentralized Deterministic Information Propagation (DDIP) model that enables the creation of networks that exhibit the properties desirable for efficient information sharing. Computational experiments showcase the ability of the DDIP model to form robust networks while being energy-conscious, i.e., without unnecessarily overloading any particular actor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz, I., Kasimoglu, I.: Ad Hoc Netw. J. 2(4), 351–367 (2004). https://bwn.ece.gatech.edu/surveys/actors.pdf

    Article  Google Scholar 

  2. Broecheler, M., Shakarian, P., Subrahmanian, V.: A scalable framework for modeling competitive diffusion in social networks. In: 2010 IEEE Second International Conference on Social Computing (SocialCom), pp. 295–302, August 2010. https://doi.org/10.1109/SocialCom.2010.49

  3. Chinowsky, P., Diekmann, J., Galotti, V.: Social network model of construction. J. Constr. Eng. Manag. 134(10), 804–812 (2008). https://doi.org/10.1061/(ASCE)0733-9364(2008)134:10(804)

  4. De, J., Zhang, X., Cheng, L.: Transduction on directed graphs via absorbing random walks. arXiv preprint arXiv:1402.4566 1402(4566) (2014). http://arxiv.org/abs/1402.4566

  5. Greenan, C.C.: Diffusion of innovations in dynamic networks. J. Roy. Stat. Soc. Ser. A (Stat. Soc.) 178(1), 147–166 (2015). https://doi.org/10.1111/rssa.12054/pdf

  6. Jackson, M.O., Watts, A.: The evolution of social and economic networks. J. Econ. Theor. 106(2), 265–295 (2002). https://doi.org/10.1006/jeth.2001.2903. http://www.sciencedirect.com/science/article/pii/S0022053101929035

    Article  MathSciNet  Google Scholar 

  7. Jiang, C., Chen, Y., Liu, K.: Evolutionary dynamics of information diffusion over social networks. IEEE Trans. Signal Process. 62(17), 4573–4586 (2014). https://doi.org/10.1109/TSP.2014.2339799

    Article  MathSciNet  MATH  Google Scholar 

  8. Lanham, M., Morgan, G., Carley, K.: Social network modeling and agent-based simulation in support of crisis de-escalation. IEEE Trans. Syst. Man Cybern. Syst. 44(1), 103–110 (2014). https://doi.org/10.1109/TSMCC.2012.2230255

    Article  Google Scholar 

  9. Nikolaev, A.G., Razib, R., Kucheriya, A.: On efficient use of entropy centrality for social network analysis and community detection. Soc. Netw. 40, 154–162 (2015). http://www.sciencedirect.com/science/article/pii/S0378873314000550

    Article  Google Scholar 

  10. Olfati-Saber, R., Fax, A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  11. Sabattini, L., Secchi, C., Chopra, N.: Decentralized control for maintenance of strong connectivity for directed graphs. In: 21st Mediterranean Conference on Control and Automation, pp. 978–986, June 2013. https://doi.org/10.1109/MED.2013.6608840

  12. Safar, M., Mahdi, K., Torabi, S.: Network robustness and irreversibility of information diffusion in Complex networks. J. Comput. Sci. 2(3), 198–206 (2011). https://doi.org/10.1016/j.jocs.2011.05.005. http://www.sciencedirect.com/science/article/pii/S1877750311000482

    Article  Google Scholar 

  13. Smith, B., Egerstedt, M., Howard, A.: Automatic deployment and formation control of decentralized multi-agent networks. In: IEEE International Conference on Robotics and Automation, ICRA 2008. pp. 134–139, May 2008. https://doi.org/10.1109/ROBOT.2008.4543198

  14. Snijders, T.A.: The statistical evaluation of social network dynamics. Sociol. Methodol. 31(1), 361–395 (2001)

    Article  MathSciNet  Google Scholar 

  15. Snijders, T.A., Van de Bunt, G.G., Steglich, C.E.: Introduction to stochastic actor-based models for network dynamics. Soc. Netw. 32(1), 44–60 (2010). http://www.sciencedirect.com/science/article/pii/S0378873309000069

    Article  Google Scholar 

  16. Villatoro, D., Sabater-Mir, J., Sen, S.: Robust convention emergence in social networks through self-reinforcing structures dissolution. ACM Trans. Auton. Adapt. Syst. 8(1), 2:1–2:21 (2013). https://doi.org/10.1145/2451248.2451250. https://doi.org/10.1145/2451248.2451250

  17. Watts, A.: A dynamic model of network formation. Games Econ. Behav. 34(2), 331–341 (2001). https://doi.org/10.1006/game.2000.0803. http://www.sciencedirect.com/science/article/pii/S0899825600908030

    Article  MathSciNet  Google Scholar 

  18. Wu, X.M., Li, Z., So, A.M., Wright, J., Chang, S.F.: Learning with partially absorbing random walks. In: Advances in Neural Information Processing Systems, pp. 3077–3085 (2012). http://papers.nips.cc/paper/4833-learning-with-partially-absorbing-random-walks

Download references

Acknowledgments

This work was funded in part by the AFRL Mathematical Modeling and Optimization Institute, by the National Science Foundation Award No. 1635611, and by the U.S. Air Force Summer Faculty Fellowship (granted to the second author by the Air Force Office of Scientific Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Nikolaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diaz, C., Nikolaev, A., Pasiliao, E. (2018). A Decentralized Deterministic Information Propagation Model for Robust Communication. In: Chen, X., Sen, A., Li, W., Thai, M. (eds) Computational Data and Social Networks. CSoNet 2018. Lecture Notes in Computer Science(), vol 11280. Springer, Cham. https://doi.org/10.1007/978-3-030-04648-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04648-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04647-7

  • Online ISBN: 978-3-030-04648-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics