Skip to main content

Gaming Bot Detection: A Systematic Literature Review

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11280))

Included in the following conference series:

Abstract

In online games, some players employ programs (bots) that allow them to bypass game routines and effortlessly gain virtual resources. This practice leads to negative effects, such as reduced revenue for the game development companies and unfair treatment for ordinary players. Bot detection methods act as a counter measure for such players. This paper presents a systematic literature review of bot detection in online games. We mainly focus on games that allow resource accumulation for players between game sessions. For this, we summarize the existing literature, list categories of games ignored by the scientific community, review publicly available datasets, present the taxonomy of detection methods and provide future directions on this topic. The main goal of this paper is to summarize the existing literature and indicate gaps in the body of knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.g2g.com/wow-us/Item-2299-19260.

  2. 2.

    http://www.sikuli.org/.

  3. 3.

    https://www.ea.com/games/bejeweled/bejeweled-blitz?setLocale=en-us.

  4. 4.

    https://www.raccoonbot.com/.

  5. 5.

    https://mybot.run/forums/.

  6. 6.

    https://wrobot.eu/store/category/2-wrobot/.

  7. 7.

    https://wrobot.eu/.

  8. 8.

    https://scholar.google.com/.

  9. 9.

    https://www.tsv.fi/julkaisufoorumi/haku.php?lang=en.

  10. 10.

    https://worldofwarcraft.com/en-us/.

  11. 11.

    https://www.joy.land/super-mario-bros.html.

  12. 12.

    http://www.syberia.microids.com/EN/.

  13. 13.

    https://starcraft.com/en-us/.

  14. 14.

    https://www.guitarhero.com/.

  15. 15.

    https://quake.bethesda.net/en.

  16. 16.

    http://www.mortalkombat.com/.

  17. 17.

    https://tetris.com/.

  18. 18.

    https://www.casinotop10.net/free-roulette.

  19. 19.

    https://supercell.com/en/games/clashroyale/.

  20. 20.

    https://toucharcade.com/2017/08/29/clash-royale-saw-27-million-players-enter-its-crown-championship-fall-season/.

  21. 21.

    http://clashroyalebot.com.br/.

  22. 22.

    http://planetquake.gamespy.com/.

  23. 23.

    http://q2scene.net/ds/.

  24. 24.

    http://ocslab.hksecurity.net/Datasets/game-bot-detection.

  25. 25.

    https://supercell.com/en/games/clashofclans/.

  26. 26.

    https://www.raccoonbot.com/.

References

  1. Ways to Make Money Playing Video Games. https://ivetriedthat.com/7-ways-to-make-money-playing-video-games/. Accessed 14 Sept 2018

  2. G2G Corporate|Gaming For A Living. https://corp.g2g.com/. Accessed 14 Sept 2018

  3. Global Games Market Revenues 2018|Per Region & Segment|Newzoo. https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/. Accessed 14 Sept 2018

  4. I will game: anatomy of MMO addiction. https://www.cnet.com/news/i-will-game-anatomy-of-mmo-addiction/. Accessed 14 Sept 2018

  5. Ahmad, M.A., Keegan, B., Srivastava, J., Williams, D., Contractor, N.: Mining for gold farmers: automatic detection of deviant players in MMOGs. In: 2009 International Conference on Computational Science and Engineering, pp. 340–345. IEEE (2009)

    Google Scholar 

  6. Ahmad, M.A., Srivastava, J.: Behavioral data mining and network analysis in massive online games. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM 2014, pp. 673–674. ACM, New York (2014). https://doi.org/10.1145/2556195.2556196

  7. Alayed, H., Frangoudes, F., Neuman, C.: Behavioral-based cheating detection in online first person shooters using machine learning techniques. In: 2013 IEEE Conference on Computational Intelligence in Games (CIG), pp. 1–8. Citeseer (2013)

    Google Scholar 

  8. Bernardi, M.L., Cimitile, M., Martinelli, F., Mercaldo, F.: A time series classification approach to game bot detection. In: Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, p. 6. ACM (2017)

    Google Scholar 

  9. Brown, N., Sandholm, T.: Superhuman AI for heads-up no-limit poker: libratus beats top professionals. Science (2017). https://doi.org/10.1126/science.aao1733. http://science.sciencemag.org/content/early/2017/12/15/science.aao1733

    Article  MathSciNet  Google Scholar 

  10. Chen, C.L., Ku, C.C., Deng, Y.Y., Tsaur, W.J.: Automatic detection for online Games Bot with APP. In: 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), pp. 289–294. IEEE (2018)

    Google Scholar 

  11. Chen, K.-T., Liao, A., Pao, H.-K.K., Chu, H.-H.: Game Bot detection based on avatar trajectory. In: Stevens, S.M., Saldamarco, S.J. (eds.) ICEC 2008. LNCS, vol. 5309, pp. 94–105. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89222-9_11

    Chapter  Google Scholar 

  12. Chun, S., Choi, D., Han, J., Kim, H.K., Kwon, T.: Unveiling a socio-economic system in a virtual world: a case study of an MMORPG. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, pp. 1929–1938. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  13. Chung, Y., et al.: Game Bot detection approach based on behavior analysis and consideration of various play styles. ETRI J. 35(6), 1058–1067 (2013)

    Article  Google Scholar 

  14. Gianvecchio, S., Wu, Z., Xie, M., Wang, H.: Battle of Botcraft: fighting bots in online games with human observational proofs. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, pp. 256–268. ACM (2009)

    Google Scholar 

  15. Gurajala, S., White, J.S., Hudson, B., Matthews, J.N.: Fake Twitter accounts: profile characteristics obtained using an activity-based pattern retection approach. In: Proceedings of the 2015 International Conference on Social Media & Society, p. 9. ACM (2015)

    Google Scholar 

  16. Kang, A.R., Jeong, S.H., Mohaisen, A., Kim, H.K.: Multimodal game bot detection using user behavioral characteristics. SpringerPlus 5(1), 523 (2016)

    Article  Google Scholar 

  17. Kang, A.R., Kim, H.K., Woo, J.: Chatting pattern based game BOT detection: do they talk like us? KSII Trans. Internet Inf. Syst. 6(11), 2866–2879 (2012)

    Google Scholar 

  18. Kang, A.R., Woo, J., Park, J., Kim, H.K.: Online game bot detection based on party-play log analysis. Comput. Math. Appl. 65(9), 1384–1395 (2013)

    Article  Google Scholar 

  19. Kwon, H., Mohaisen, A., Woo, J., Kim, Y., Lee, E., Kim, H.K.: Crime scene reconstruction: online gold farming network analysis. IEEE Trans. Inf. Forensics Secur. 12(3), 544–556 (2017)

    Google Scholar 

  20. Laurens, P., Paige, R.F., Brooke, P.J., Chivers, H.: A novel approach to the detection of cheating in multiplayer online games. IEEE (2007)

    Google Scholar 

  21. Levy, Y., Ellis, T.J.: A systems approach to conduct an effective literature review in support of information systems research. Inf. Sci. 9 (2006)

    Article  Google Scholar 

  22. Mitterhofer, S., Krügel, C., Kirda, E., Platzer, C.: Server-side bot detection in massively multiplayer online games. IEEE Secur. Priv. 7 (2009)

    Article  Google Scholar 

  23. Ontan, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss, M.: A survey of real-time strategy game AI research and competition in starcraft. IEEE Trans. Comput. Intell. AI Games 5(4), 293–311 (2013). https://doi.org/10.1109/TCIAIG.2013.2286295

    Article  Google Scholar 

  24. Prasetya, K., Wu, Z.D.: Artificial neural network for bot detection system in MMOGs. In: Proceedings of the 9th Annual Workshop on Network and Systems Support for Games, p. 16. IEEE Press (2010)

    Google Scholar 

  25. Rocha, J.B., Mascarenhas, S., Prada, R.: Game mechanics for cooperative games. ZON Digital Games 2008, 72–80 (2008)

    Google Scholar 

  26. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 31(3), 357–374 (2012)

    Article  Google Scholar 

  27. Tao, J., Xu, J., Gong, L., Li, Y., Fan, C., Zhao, Z.: NGUARD: A Game Bot Detection Framework for NetEase MMORPGs (2018)

    Google Scholar 

  28. Thawonmas, R., Kashifuji, Y., Chen, K.T.: Detection of MMORPG bots based on behavior analysis. In: Proceedings of the 2008 International Conference on Advances in Computer Entertainment Technology, pp. 91–94. ACM (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Semenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kotkov, D., Pandey, G., Semenov, A. (2018). Gaming Bot Detection: A Systematic Literature Review. In: Chen, X., Sen, A., Li, W., Thai, M. (eds) Computational Data and Social Networks. CSoNet 2018. Lecture Notes in Computer Science(), vol 11280. Springer, Cham. https://doi.org/10.1007/978-3-030-04648-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04648-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04647-7

  • Online ISBN: 978-3-030-04648-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics