Skip to main content

Application of SIRUS in Credit Card Fraud Detection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11280))

Abstract

Credit card fraud problem is very common in recent years. It not only causes economic loss to people, but also causes trust crisis to enterprises. Due to the imbalance of data, fraud detection has always been tricky. In our previous work, we proposed a method of dealing with the class imbalance problem based on stacking ensemble learning and inverse random undersampling method (SIRUS). First, the inverse random undersampling method is used to generate multiple data subsets from the original data set. Then we use the stacking ensemble learning method for each data subset to train several different learners (also called first-level learners), and then the results generated by each first-level learner are taken as features to train a meta learner. We apply SIRUS to detect the credit card fraud in this paper. Our dataset comes from a financial company in China. A variety of measurements such as recall, precision, accuracy, F-measure, and G-mean to illustrate the effectiveness of our method in fraud detection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Srivastava, A., et al.: Credit card fraud detection using Hidden Markov Model. IEEE Trans. Dependable Secur. Comput. 5(1), 37–48 (2008)

    Article  Google Scholar 

  2. Bahnsen, A.C., Aouada, D., Stojanovic, A.: Feature engineering strategies for credit card fraud detection. Expert Syst. Appl. Int. J. 51(C), 134–142 (2016)

    Google Scholar 

  3. Albrecht, W.S., Albrecht, C., Albrecht, C.C.: Current trends in fraud and its detection. Inf. Syst. Secur. 17(1), 2–12 (2008)

    MATH  Google Scholar 

  4. Yong-Hua, X.U.: Detection of credit card fraud based on support vector machine. Comput. Simul. 28(8), 371–376 (2011)

    Google Scholar 

  5. Whitrow, C., et al.: Transaction aggregation as a strategy for credit card fraud detection. Data Min. Knowl. Disc. 18(1), 30–55 (2009)

    Article  MathSciNet  Google Scholar 

  6. Kou, Y., et al.: Survey of fraud detection techniques. In: IEEE International Conference on Networking, Sensing and Control IEEE, vol. 2, 749–754 (2004)

    Google Scholar 

  7. Khoshgoftaar, T.M., et al.: Learning with limited minority class data. In: International Conference on Machine Learning and Applications, pp. 348–353. IEEE (2007)

    Google Scholar 

  8. Tahir, M.A., Kittler, J., Yan, F.: Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recogn. 45(10), pp. 3738–3750 (2012)

    Article  Google Scholar 

  9. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Kittler, J., et al.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

  11. Wolpert, D.H.: Stacked generalization *. Neural Netw. 5(2), 241–259 (1992)

    Article  Google Scholar 

  12. Zhang, Y., Liu, G., Luan, W., Yan, C., Jiang, C.: An approach to class imbalance problem based on stacking and inverse random under sampling methods, pp. 1–6 (2018). https://doi.org/10.1109/ICNSC.2018.8361344

  13. Bhattacharyya, S., et al.: Data mining for credit card fraud: a comparative study. Decis. Support. Syst. 50(3), 602–613 (2011)

    Article  Google Scholar 

  14. Abbasi, A., et al.: Metafraud: a meta-learning framework for detecting financial fraud. MIS Q. 36(4), 1293–1327 (2012)

    Article  Google Scholar 

  15. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  16. Tomek, I.: Two modifications of CNN. IEEE Trans. Syst. Man Cybern. SMC 6(11), 769–772 (1976)

    Google Scholar 

  17. Chawla, N.V., et al.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002)

    Article  Google Scholar 

  18. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/11538059_91

    Chapter  Google Scholar 

  19. Weiss, G.M.: Mining with rarity: a unifying framework. ACM SIGKDD Explor. Newslett. 6(1), 7–19 (2004)

    Article  Google Scholar 

  20. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59119-2_166

    Chapter  Google Scholar 

  21. Nanni, L., Lumini, A.: FuzzyBagging: a novel ensemble of classifiers. Pattern Recogn. 39(3), 488–490 (2006)

    Article  Google Scholar 

  22. Zhang, P.B., Yang, Z.X.: A Novel AdaBoost framework with robust threshold and structural optimization. IEEE Trans. Cybern. PP(99), 1–13 (2016)

    Google Scholar 

  23. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Taylor & Francis (2012)

    Google Scholar 

  24. Hall, M., et al.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)

    Article  Google Scholar 

  25. Chan, P.K., Stolfo, S.J.: Toward scalable learning with non-uniform class and cost distributions: a case study in credit card fraud detection. In: International Conference on Knowledge Discovery and Data Mining AAAI Press, pp. 164–168 (1998)

    Google Scholar 

  26. Wang, B.X., Japkowicz, N.: Imbalanced Data Set Learning with Synthetic Examples. IRIS Machine Learning Workshop, N.p. (2004). Print

    Google Scholar 

  27. Galar, M., et al.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(4), 463–484 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanjun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Liu, G., Luan, W., Yan, C., Jiang, C. (2018). Application of SIRUS in Credit Card Fraud Detection. In: Chen, X., Sen, A., Li, W., Thai, M. (eds) Computational Data and Social Networks. CSoNet 2018. Lecture Notes in Computer Science(), vol 11280. Springer, Cham. https://doi.org/10.1007/978-3-030-04648-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04648-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04647-7

  • Online ISBN: 978-3-030-04648-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics