Skip to main content

Max-Min Dispersion on a Line

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11346))

Abstract

Given a set P of n locations on which facilities can be placed and an integer k, we want to place k facilities on some locations so that a designated objective function is maximized. The problem is called the k-dispersion problem.

In this paper we give a simple O(n) time algorithm to solve the max-min version of the k-dispersion problem if P is a set of points on a line. This is the first O(n) time algorithm to solve the max-min k-dispersion problem for the set of “unsorted” points on a line.

If P is a set of sorted points on a line, and the input is given as an array in which the coordinates of the points are stored in the sorted order, then by slightly modifying the algorithm above one can solve the dispersion problem in \(O(\log n)\) time. This is the first sublinear time algorithm to solve the max-min k-dispersion problem for the set of sorted points on a line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P., Sharir, M.: Efficient algorithms for geometric optimization. Comput. Surv. 30, 412–458 (1998)

    Article  Google Scholar 

  2. Akagi, T., Nakano, S.: Dispersion on the line. IPSJ SIG Technical reports, 2016-AL-158-3 (2016)

    Google Scholar 

  3. Akagi, T., et al.: Exact algorithms for the max-min dispersion problem. In: Chen, J., Lu, P. (eds.) FAW 2018. LNCS, vol. 10823, pp. 263–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78455-7_20

    Chapter  Google Scholar 

  4. Baur, C., Fekete, S.P.: Approximation of geometric dispersion problems. In: Jansen, K., Rolim, J. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 63–75. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053964

    Chapter  MATH  Google Scholar 

  5. Birnbaum, B., Goldman, K.J.: An improved analysis for a greedy remote-clique algorithm using factor-revealing LPs. Algorithmica 50, 42–59 (2009)

    Article  MathSciNet  Google Scholar 

  6. Cevallos, A., Eisenbrand, F., Zenklusen, R.: Max-sum diversity via convex programming. In: Proceedings of SoCG 2016, pp. 26:1–26:14 (2016)

    Google Scholar 

  7. Cevallos, A., Eisenbrand, F., Zenklusen, R.: Local search for max-sum diversification. In: Proceedings of SODA 2017, pp. 130–142 (2017)

    Google Scholar 

  8. Chandra, B., Halldorsson, M.M.: Approximation algorithms for dispersion problems. J. Algorithms 38, 438–465 (2001)

    Article  MathSciNet  Google Scholar 

  9. Drezner, Z. (ed.): Facility Location: A Survey of Applications and Methods. Springer, New York (1995)

    Google Scholar 

  10. Drezner, Z., Hamacher, H.W. (eds.): Facility Location: Applications and Theory. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  11. Erkut, E.: The discrete \(p\)-dispersion problem. Eur. J. Oper. Res. 46, 48–60 (1990)

    Article  MathSciNet  Google Scholar 

  12. Fekete, S.P., Meijer, H.: Maximum dispersion and geometric maximum weight cliques. Algorithmica 38, 501–511 (2004)

    Article  MathSciNet  Google Scholar 

  13. Frederickson, G.: Optimal algorithms for tree partitioning. In: Proceedings of SODA 1991, pp. 168–177 (1991)

    Google Scholar 

  14. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum dispersion. Oper. Res. Lett. 21, 133–137 (1997)

    Article  MathSciNet  Google Scholar 

  15. Ravi, S.S., Rosenkrantz, D.J., Tayi, G.K.: Heuristic and special case algorithms for dispersion problems. Oper. Res. 42, 299–310 (1994)

    Article  Google Scholar 

  16. Sydow, M.: Approximation guarantees for max sum and max min facility dispersion with parameterised triangle inequality and applications in result diversification. Mathematica Applicanda 42, 241–257 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Tsai, K.-H., Wang, D.-W.: Optimal algorithms for circle partitioning. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 304–310. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0045097

    Chapter  Google Scholar 

  18. Wang, D.W., Kuo, Y.-S.: A study on two geometric location problems. Inf. Process. Lett. 28, 281–286 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Nakano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Araki, T., Nakano, Si. (2018). Max-Min Dispersion on a Line. In: Kim, D., Uma, R., Zelikovsky, A. (eds) Combinatorial Optimization and Applications. COCOA 2018. Lecture Notes in Computer Science(), vol 11346. Springer, Cham. https://doi.org/10.1007/978-3-030-04651-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04651-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04650-7

  • Online ISBN: 978-3-030-04651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics