Abstract
We outline a research journey which set out to tackle automatic programming and got distracted by success in a series of real-World applications including Software-defined Cellular Communications Networks, Design, Engineering, Business Analytics and Finance and Search-based Software Engineering. In particular the domain of software-defined communications networks represents a significant opportunity for the application of automatic programming and will be the focus of this chapter. When one takes a problem, as opposed to method, perspective what becomes important is finding the best method or combination of methods to extract the best performance in the problem domain of interest. We propose that the field of Genetic Programming needs to take a broader perspective, to return to its roots in the problem domain of Automatic Programming, redefine itself to this end, and embrace a wider set of methods in order to achieve success in this holy grail problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bierman A.W., Guiho G., Kodratoff Y. (Ed’s) (1984). Automatic Program Construction Techniques. Macmillan Publishing Company.
Rich C., Waters R. (1988). Automatic Programming: Myths and prospects. IEEE Computer 21(8):40–51.
Koza J.R. (1989). Hierarchical genetic algorithms operating on populations of computer programs. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence IJCAI-89, Detroit, MI, pp.768–774. Morgan Kaufmann.
Koza J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press
Koza J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press
Koza J.R., Andre D., Bennet III Forrest H., Keane M. (1999). Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann
Koza J.R., Keane M., Streeter M.J., Mydlowec W., Yu J., Lanza G. (2003). Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers.
Samuel A.L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3):210–229.
Austel V., et al. (2017). Globally Optimal Symbolic Regression. In Interpretable ML Symposium, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
McConaghy T.(2011). FFX: Fast, Scalable, Deterministic Symbolic Regression Technology. Genetic Programming Theory and Practice IX, Edited by R. Riolo, E. Vladislavleva, and J. Moore. Springer.
Moraglio A., Krawiec K., Johnson C.G. (2012). Geometric Semantic Genetic Programming. In LNCS 7491 Proceedings of the International Conference on Parallel Problem Solving from Nature PPSN 2012, pp.21–31. Springer.
O’Neill M., Vanneschi L., Gustafson S., Banzhaf W. (2010). Open Issues in Genetic Programming. Genetic Programming and Evolvable Machines, 11(4):339–363
O’Neill M., Nicolau M. (2017). Distilling the salient features of natural systems: Commentary on “On the mapping of genotype to phenotype in evolutionary algorithms” by Whigham, Dick and Maclaurin. Genetic Programming and Evolvable Machines, 18(3):379–383
Friedberg R. (1958). A Learning Machine: Part 1. IBM Journal of Research and Development. 2(1):2–13.
Friedberg R., Dunham B., North J. (1959). A Learning Machine: Part 2. IBM Journal of Research and Development pp282–287.
White, D.R., McDermott, J., Castelli, M. et al. (2013). Better GP benchmarks: community survey results and proposals. Genetic Programming and Evolvable Machines, 14(1):3–29.
O’Neill M., Vanneschi L., Gustafson S., Banzhaf W. (2013). Tutorial on Open Issues in Genetic Programming. In the GECCO 2013 Companion Proceedings, Amsterdam, The Netherlands. ACM Press.
Helmuth T., and Spector L. (2015). General Program Synthesis Benchmark Suite. In GECCO ’15: Proceedings of the 17th annual conference on Genetic and Evolutionary Computation. July 2015. ACM
Helmuth T., and Spector L. https://thelmuth.github.io/GECCO_2015_Benchmarks_Materials/
Krawiec K., Bladek I., Swan J. (2017). Counterexample-driven Genetic Programming. In Proceedings of the Genetic and Evolutionary Computation Conference, pp.953–960, Berlin, Germany, 2017. ACM
McKay R.I., Nguyen X.H., Whigham P.A., Shan Y., O’Neill M. (2010). Grammar-based Genetic Programming - A Survey. Genetic Programming and Evolvable Machines, 11(4):365–396
O’Neill M., Ryan C. (2003). Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers.
Brabazon A., O’Neill M. (2006). Biologically Inspired Algorithms for Financial Modelling. Springer.
Dempsey I., Brabazon A., O’Neill M. (2009). Foundations in Grammatical Evolution for Dynamic Environments. Springer.
Brabazon A., McGarraghy S., O’Neill M. (2015). Natural Computing Algorithms. Springer.
Ryan C., O’Neill M., Collins J.J. (Ed’s) (2018). Handbook of Grammatical Evolution. Springer
O’Neill M. (2001). Automatic Programming in an Arbitrary Language: Evolving Programs with Grammatical Evolution. PhD Thesis. University of Limerick, Ireland.
O’Neill M., Ryan C. (1999). Automatic Generation of Caching Algorithms. In Proceedings of EUROGEN 1999, Short Course on Evolutionary Algorithms in Engineering and Computer Science, University of Jyvaskyla, Jyvaskyla, Finland.
O’Neill M., Nicolau M., Agapitos A. (2014). Experiments in Program Synthesis with Grammatical Evolution: a focus on Integer Sorting. In Proceedings of IEEE Congress on Evolutionary Computation, Beijing. IEEE Press.
O’Neill M., Ryan C. (1999). Evolving Multi-Line Compilable C Code. In LNCS 1598 Proceedings of the Second European Workshop on Genetic Programming EuroGP 1999, pp.83–92, Goteborg, Sweden. Springer.
O’Neill M., Brabazon A., Ryan C., Collins J.J. (2001). Developing a Market Timing System using Grammatical Evolution Genetic and Evolutionary Computation Conference GECCO 2001, pp.1375–1381, San Francisco, CA, USA. Morgan Kaufmann.
Brabazon A., O’Neill M. (2004). Evolving Technical Trading Rules for Spot Foreign-Exchange Markets Using Grammatical Evolution. Computational Management Science, 1(3–4):311–328
Brabazon A., O’Neill M. (2004). Diagnosing Corporate Stability using Grammatical Evolution. International Journal of Applied Mathematics and Computer Science, 14(3):363–374
Brabazon A., O’Neill M. (2004). Bond Issuer Credit Rating with Grammatical Evolution Applications of Evolutionary Computing. In LNCS 3005 Proceedings of EvoIASP 2004, pp. 270–279, Coimbra, Portugal. Springer.
Cui W., Brabazon A., O’Neill M. (2011). Adaptive Trade Execution: A Grammatical Evolution Approach. International Journal of Financial Markets and Derivatives, 2(1–2):4–31
S. Forstenlechner, D. Fagan, M. Nicolau and M. O’Neill (2018). “Towards Understanding and Refining the General Program Synthesis Benchmark Suite with Genetic Programming,” 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, 2018, pp. 1–6.
Forstenlechner S., Fagan D., Nicolau M., O’Neill M. (2018). Towards Effective Semantic Operators for Program Synthesis in Genetic Programming, In Proceedings of ACM GECCO 2018, Kyoto, Japan. pp. 1119–1126, ACM Press.
Forstenlechner S., Fagan D., Nicolau M., O’Neill M. (2017). A Grammar Design Pattern for Arbitrary Program Synthesis Problems in Genetic Programming. In Proceedings of EuroGP 2017 European Conference on Genetic Programming, Amsterdam. Springer.
Forstenlechner S., Fagan D., Nicolau M., O’Neill M. (2017). Semantics-based Crossover for Program Synthesis in Genetic Programming. In Proceedings of EA2017, Paris, France. Springer.
Fenton M., McNally C., Byrne J., Hemberg E., McDermott J., O’Neill M. (2016). Discrete Planar Truss Optimization by Node Position Variation using Grammatical Evolution. IEEE Transactions on Evolutionary Computation, 20(4):577–589
Nicolau M., Perez-Liebana D., O’Neill M., Brabazon A. (2016). Evolutionary Behaviour Tree Approaches for Navigating Platform Games. IEEE Transactions on Computational Intelligence and AI in Games, 9(3):227–238
Byrne J., Fenton M., Hemberg E., McDermott J., O’Neill M. (2014). Optimising Complex Pylon Structures with Grammatical Evolution. Information Sciences, 316:582–597
Fenton M., McNally C., Byrne J., Hemberg E., McDermott J., O’Neill M. (2014). Automatic innovative truss design using grammatical evolution. Automation in Construction, 39:59–69
Byrne J., Cardiff P., Brabazon A., O’Neill M. (2014). Evolving Parametric Aircraft Models for Design Exploration and Optimisation. Neurocomputing, 142:39–47.
Cody-Kenny B., Fenton M., Ronayne A., Considine E., McGuire T, O’Neill M. (2017). A Search for Improved Performance in Regular Expressions, In Proceedings of the GECCO 2017 Conference Companion, Berlin, Germany. ACM
Cody-Kenny B., Manganielloa U., Farrelly J., Ronanye A., Considine E., McGuire T., O’Neill M. (2018). Investigating the Evolvability of Web Page Load Time, In Proceedings of the European Conference on the Applications of Evolutionary Computation, Parma, Italy. Springer.
Borlikova G., Phillips M., Smith L., O’Neill M. (2016). Evolving classification models for prediction of patient recruitment in multi centre clinical trials using grammatical evolution, In Proceedings of EvoAPP 2016, pp.46–57, Porto, Portugal. Springer.
Borlikova G., Phillips M., Smith L., O’Neill M. (2016). Alternative fitness functions in the development of models for prediction of patient recruitment in multicentre clinical trials, In Proceedings of OR 2016, Hamburg, Germany. Springer.
Borlikova G., O’Neill M., Phillips M., Smith L. (2017). Development of a multi-model system to accommodate unknown misclassification costs in prediction of patient recruitment in multicentre clinical trials, In Proceedings of GECCO 2017, Berlin, Germany. ACM.
Hemberg E., Ho L., O’Neill M., Claussen H. (2013). A comparison of grammatical genetic programming grammars for controlling femtocell network coverage. Genetic Programming and Evolvable Machines 14(1):65–93
Hemberg E., Ho L., O’Neill M., Claussen H. (2012). Representing Communication and Learning in Femtocell Pilot Power Control Algorithms. In Rick Riolo and Ekaterina Vladislavleva and Marylyn D. Ritchie and Jason H. Moore editors, Genetic Programming Theory and Practice X, chapter 15, pages 223–238. Springer, Ann Arbor, USA, 2012
Hemberg E., Ho L., O’Neill M., Claussen H. (2012). Comparing the robustness of grammatical genetic programming solutions for femtocell algorithms. In GECCO Companion ’12: Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference companion, pages 1525–1526, Philadelphia, Pennsylvania, USA, 2012. ACM.
Hemberg E., Ho L., O’Neill M., Claussen H. (2011). A symbolic regression approach to manage femtocell coverage using grammatical genetic programming. In 3rd symbolic regression and modeling workshop for GECCO 2011, pages 639–646, Dublin, Ireland, 2011. ACM.
Fenton M., Lynch D., Fagan D., Kucera S., Claussen H., O’Neill M. (2018). Towards Automation & Augmentation of the Design of Schedulers for Cellular Communications Networks. Evolutionary Computation (online first)
Fenton M., Lynch D., Kucera S., Claussen H., O’Neill M. (2017). Multilayer Optimization of Heterogeneous Networks Using Grammatical Genetic Programming. IEEE Transactions on Cybernetics, 47(9):2938–2950
Fagan D., Fenton M., Lynch D., Kucera S., Claussen H., O’Neill M. (2017). Deep Learning through Evolution: A Hybrid Approach to Scheduling in a Dynamic Environment International Joint Conference on Neural Networks, In Proceedings of IJCNN 2017, Anchorage, Alaska. IEEE Press
Lynch D., Fagan D., Kucera S., Claussen H., O’Neill M. (2018). Managing Quality of Service through Intelligent Scheduling in Heterogeneous Wireless Communications Networks. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation, Rio de Janeiro, Brazil. IEEE Press.
Gottschlich J., et al (2018). The Three Pillars of Machine-Based Programming. arXiv preprint arXiv:1803.07244. https://arxiv.org/pdf/1803.07244.pdf
Muggleton, S.H. (1991). Inductive logic programming. New Generation Computing. 8 (4): 295–318
Krawiec K. (2016). Behavioral Program Synthesis with Genetic Programming. Springer.
Acknowledgements
We would like to acknowledge and thank the significant contributions of members, past and present, of the UCD Natural Computing Research & Applications Group to the body of work, which this chapter represents. This research is based upon works supported by Science Foundation Ireland under grants 08/IN.1/I1868, 13/IA/1850 and 13/RC/2094.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
O’Neill, M., Fagan, D. (2019). The Elephant in the Room: Towards the Application of Genetic Programming to Automatic Programming. In: Banzhaf, W., Spector, L., Sheneman, L. (eds) Genetic Programming Theory and Practice XVI. Genetic and Evolutionary Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-04735-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-04735-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04734-4
Online ISBN: 978-3-030-04735-1
eBook Packages: Computer ScienceComputer Science (R0)