Skip to main content

Formalizing a Notion of Concentration Robustness for Biochemical Networks

  • Conference paper
  • First Online:
Software Technologies: Applications and Foundations (STAF 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11176))

Abstract

The main goal of systems biology is to understand the dynamical properties of biological systems by investigating the interactions among the components of a biological system. In this work, we focus on the robustness property, a behaviour observed in several biological systems that allows them to preserve their functions despite external and internal perturbations. We first propose a new formal definition of robustness using the formalism of continuous Petri nets. In particular, we focus on robustness against perturbations to the initial concentrations of species. Then, we demonstrate the validity of our definition by applying it to the models of three different robust biochemical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Uri, A.: An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57318-6_30

    Chapter  Google Scholar 

  3. Angeli, D., De Leenheer, P., Sontag, E.D.: On the structural monotonicity of chemical reaction networks, pp. 7–12. IEEE (2006)

    Google Scholar 

  4. Antoniotti, M., Mishra, B., Piazza, C., Policriti, A., Simeoni, M.: Modeling cellular behavior with hybrid automata: bisimulation and collapsing. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 57–74. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36481-1_6

    Chapter  Google Scholar 

  5. Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Specialized predictor for reaction systems with context properties. In: International Workshop on Concurrency, Specification and Programming, CS&P 2015, pp. 31–43 (2015)

    Google Scholar 

  6. Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Investigating dynamic causalities in reaction systems. Theoret. Comput. Sci. 623, 114–145 (2016)

    Article  MathSciNet  Google Scholar 

  7. Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Specialized predictor for reaction systems with context properties. Fundamenta Informaticae 147(2–3), 173–191 (2016)

    Article  MathSciNet  Google Scholar 

  8. Barkai, N., Leibler, S.: Robustness in simple biochemical networks. Nature 387(6636), 913 (1997)

    Article  Google Scholar 

  9. Batchelor, E., Goulian, M.: Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc. Nat. Acad. Sci. U.S.A. 100(2), 691–696 (2003)

    Article  Google Scholar 

  10. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36481-1_13

    Chapter  Google Scholar 

  11. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. Theoret. Comput. Sci. 410(33–34), 3065–3084 (2009)

    Article  MathSciNet  Google Scholar 

  12. Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract interpretation of cellular signalling networks. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 83–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78163-9_11

    Chapter  MATH  Google Scholar 

  13. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 75(1–4), 263–280 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway logic: symbolic analysis of biological signaling. In: Biocomputing 2002, pp. 400–412. World Scientific (2001)

    Google Scholar 

  15. Fages, F., Soliman, S.: Abstract interpretation and types for systems biology. Theoret. Comput. Sci. 403(1), 52–70 (2008)

    Article  MathSciNet  Google Scholar 

  16. Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors-I. the deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42(10), 2229–2268 (1987)

    Article  Google Scholar 

  17. Gilbert, D., Heiner, M.: From petri nets to differential equations – an integrative approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006). https://doi.org/10.1007/11767589_11

    Chapter  Google Scholar 

  18. Gori, R., Levi, F.: Abstract interpretation based verification of temporal properties for bioambients. Inf. Comput. 208(8), 869–921 (2010)

    Article  MathSciNet  Google Scholar 

  19. Goss, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic petri nets. Proc. Nat. Acad. Sci. U.S.A. 95(12), 6750–6755 (1998)

    Article  Google Scholar 

  20. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems, pp. 265–292. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-5_13

    Chapter  Google Scholar 

  21. Kitano, H.: Systems biology: towards systems-level understanding of biological systems. In: Kitano, H. (ed.) Foundations of Systems Biology (2002)

    Google Scholar 

  22. Kitano, H.: Biological robustness. Nat. Rev. Genet. 5(11), 826–837 (2004)

    Article  Google Scholar 

  23. Kwiatkowska, M., Norman, G., Parker, D.: Using probabilistic model checking in systems biology. ACM SIGMETRICS Perform. Eval. Rev. 35(4), 14–21 (2008)

    Article  Google Scholar 

  24. Li, X., Omotere, O., Qian, L., Dougherty, E.R.: Review of stochastic hybrid systems with applications in biological systems modeling and analysis. EURASIP J. Bioinf. Syst. Biol. 2017(1), 8 (2017)

    Article  Google Scholar 

  25. Linz, P.: Analytical and Numerical Methods for Volterra Equations. SIAM (1985)

    Google Scholar 

  26. Lotka, A.J.: Contribution to the theory of periodic reactions. J. Phys. Chem. 14(3), 271–274 (1910)

    Article  Google Scholar 

  27. Nasti, L., Milazzo, P.: A computational model of internet addiction phenomena in social networks. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 86–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1_7

    Chapter  Google Scholar 

  28. Paun, G.: Introduction to Membrane Computing. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-642-56196-2

    Book  MATH  Google Scholar 

  29. Pérez-Jiménez, M.J., Romero-Campero, F.J.: A study of the robustness of the EGFR signalling cascade using continuous membrane systems. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3561, pp. 268–278. Springer, Heidelberg (2005). https://doi.org/10.1007/11499220_28

    Chapter  Google Scholar 

  30. Ramsey, S., Orrell, D., Bolouri, H.: Dizzy: stochastic simulation of large-scale genetic regulatory networks. J. Bioinf. Comput. Biol. 3(02), 415–436 (2005)

    Article  Google Scholar 

  31. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N., et al.: Petri net representations in metabolic pathways. In: ISMB, pp. 328–336 (1993)

    Google Scholar 

  32. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 25(12), i169–i178 (2009)

    Article  Google Scholar 

  33. Rizk, A., Batt, G., Fages, F., Soliman, S.: Continuous valuations of temporal logic specifications with applications to parameter optimization and robustness measures. Theoret. Comput. Sci. 412(26), 2827–2839 (2011)

    Article  MathSciNet  Google Scholar 

  34. Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction networks. Science 327(5971), 1389–1391 (2010)

    Article  Google Scholar 

  35. Shinar, G., Feinberg, M.: Design principles for robust biochemical reaction networks: what works, what cannot work, and what might almost work. Mathe. Biosci. 231(1), 39–48 (2011)

    Article  MathSciNet  Google Scholar 

  36. Weisstein, E.W.: Logistic equation. From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticEquation.html

Download references

Acknowledgements

This work has been supported by the project “Metodologie informatiche avanzate per l’analisi di dati biomedici” funded by the University of Pisa (PRA_2017_44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Nasti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nasti, L., Gori, R., Milazzo, P. (2018). Formalizing a Notion of Concentration Robustness for Biochemical Networks. In: Mazzara, M., Ober, I., Salaün, G. (eds) Software Technologies: Applications and Foundations. STAF 2018. Lecture Notes in Computer Science(), vol 11176. Springer, Cham. https://doi.org/10.1007/978-3-030-04771-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04771-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04770-2

  • Online ISBN: 978-3-030-04771-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics