Skip to main content

HyGrid: A CPU-GPU Hybrid Convolution-Based Gridding Algorithm in Radio Astronomy

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11334))

Abstract

New-generation radio telescopes have been producing an unprecedented scale of data every day and requiring fast algorithms to speedup their data processing work flow urgently. The most data intensive computing phase during the entire work flow is gridding, which converts original data from irregular sampling space to regular grid space. Current methods are mainly focused on interferometers or have limitations on the resolutions due to the memory wall. Here we propose a CPU-GPU hybrid algorithm which accelerates the process of gridding. It employs multi-CPU to perform pre-ordering and GPU to speed up convolution-based gridding. Several optimization strategies are further proposed for reducing unnecessary memory access and maximizing the utilization of the heterogeneous architecture. Testing results demonstrate that the proposal is especially suitable for gridding large-scale data and can improve performance by up to 71.25 times compared to the traditional multi-thread CPU-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://healpix.sourceforge.net/.

  2. 2.

    https://boost.org.

References

  1. van Amesfoort, A.S., Varbanescu, A.L., Sips, H.J., van Nieuwpoort, R.V.: Evaluating multi-core platforms for HPC data-intensive kernels. In: Proceedings of the 6th ACM conference on Computing frontiers, CF 2009, pp. 207–216. ACM, New York (2009)

    Google Scholar 

  2. Baron, F., Kloppenborg, B., Monnier, J.: Toward 5D image reconstruction for optical interferometry, vol. 8445. Amsterdam, Netherlands (2012)

    Google Scholar 

  3. Bell, N., Hoberock, J.: Thrust: a productivity-oriented library for CUDA. In: Hwu, W.W. (ed.) GPU Computing Gems. Applications of GPU Computing Series, Jade edn, pp. 359–371. Morgan Kaufmann, Boston (2012)

    Chapter  Google Scholar 

  4. Calabretta, M.R., Roukema, B.F.: Mapping on the healpix grid. Mon. Not. R. Astron. Soc. 381(2), 865–872 (2007)

    Article  Google Scholar 

  5. Cornwell, T.J., Golap, K., Bhatnagar, S.: W projection: a new algorithm for wide field imaging with radio synthesis arrays. In: Astronomical Data Analysis Software and Systems XIV. Astronomical Society of the Pacific Conference Series, vol. 347, p. 86 (12 2005)

    Google Scholar 

  6. Cornwell, T.J., Golap, K., Bhatnagar, S.: The noncoplanar baselines effect in radio interferometry: the W-projection algorithm. IEEE J. Sel. Top. Signal Process. 2(5), 647–657 (2008)

    Article  Google Scholar 

  7. De, K., Gupta, Y.: A real-time coherent dedispersion pipeline for the giant metrewave radio telescope. Exp. Astron. 41(1), 67–93 (2016)

    Article  Google Scholar 

  8. Dickey, J.M.: Spectral line advanced topics. In: Single-Dish Radio Astronomy: Techniques and Applications. Astronomical Society of the Pacific Conference Series, vol. 278, pp. 209–225 (2002)

    Google Scholar 

  9. Dudgeon, D.E., Mersereau, R.M.: Multidimensional Digital Signal Processing. Prentice Hall Signal Processing Series. Prentice-Hall (1984)

    Google Scholar 

  10. Edgar, R., et al.: Enabling a high throughput real time data pipeline for a large radio telescope array with GPUs. Comput. Phys. Commun. 181(10), 1707–1714 (2010)

    Article  Google Scholar 

  11. Fernique, P., Durand, D., Boch, T., Oberto, A., Pineau, F.: HEALpix based cross-correlation in astronomy. In: Astronomical Data Analysis Software and Systems XXII. Astronomical Society of the Pacific Conference Series, vol. 475, p. 135 (2013)

    Google Scholar 

  12. Gai, J., et al.: More IMPATIENT: a gridding-accelerated Toeplitz-based strategy for non-Cartesian high-resolution 3D MRI on GPUs. J. Parallel Distrib. Comput. 73(5), 686–697 (2013)

    Article  Google Scholar 

  13. Górski, K.M., et al.: HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622(2), 759 (2005)

    Article  Google Scholar 

  14. Giovanelli, R., Haynes, M.P., Kent, B.R., et al.: The arecibo legacy fast ALFA survey: I. Science goals, survey design, and strategy. Astrophys. J. 130(6), 2598 (2005)

    Google Scholar 

  15. Hong, Z., Yu, C., Wang, J., Xiao, J., Cui, C., Sun, J.: Aquadexim: highly efficient in-memory indexing and querying of astronomy time series images. Exp. Astron. 42(3), 387–405 (2016)

    Article  Google Scholar 

  16. Hotan, A.W., et al.: The Australian square kilometre array pathfinder: system architecture and specifications of the boolardy engineering test array, vol. 31, p. e041. Publications of the Astronomical Society of Australia (2014)

    Google Scholar 

  17. Humphreys, B., Cornwell, T.: SKA memo 132: analysis of convolutional resampling algorithm performance (2011)

    Google Scholar 

  18. Hwu, W.M.W., et al.: Accelerating MR image reconstruction on GPUs. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1283–1286 (2009)

    Google Scholar 

  19. Jackson, J.I., Meyer, C.H., Nishimura, D.G., Macovski, A.: Selection of a convolution function for Fourier inversion using gridding. IEEE Trans. Med. Imaging 10(3), 473–478 (1991)

    Article  Google Scholar 

  20. Léna, P., Rouan, D., Lebrun, F., Mignard, F., Pelat, D., Lyle, S.: Observational Astrophysics. Astronomy and Astrophysics Library, 3rd edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-21815-6

    Book  Google Scholar 

  21. Maeda, A., Sano, K., Yokoyama, T.: Reconstruction by weighted correlation for MRI with time-varying gradients. IEEE Trans. Med. Imaging 7(1), 26–31 (1988)

    Article  Google Scholar 

  22. Mangum, J.G., Emerson, D.T., Greisen, E.W.: The on the fly imaging technique. A&A 474(2), 679–687 (2007)

    Article  Google Scholar 

  23. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns for Efficient Computation, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2012)

    Google Scholar 

  24. Merry, B.: Faster GPU-based convolutional gridding via thread coarsening. Astron. Comput. 16, 140–145 (2016)

    Article  Google Scholar 

  25. Mink, D.: WCSTools 4.0: Building Astrometry and Catalogs into Pipelines. In: Astronomical Data Analysis Software and Systems XV. Astronomical Society of the Pacific Conference Series, vol. 351, p. 204 (2006)

    Google Scholar 

  26. Muscat, D.: High-performance image synthesis for radio interferometry (2014)

    Google Scholar 

  27. Nan, R.: Five hundred meter aperture spherical radio telescope (fast). Sci. China Ser. G 49(2), 129–148 (2006)

    Article  Google Scholar 

  28. Nan, R., et al.: The five-hundred-meter aperture spherical radio telescope (fast) project. Int. J. Mod. Phys. D 20(06), 989–1024 (2011)

    Article  Google Scholar 

  29. O’Sullivan, J.D.: A fast sinc function gridding algorithm for Fourier inversion in computer tomography. IEEE Trans. Med. Imaging 4(4), 200–207 (1985)

    Article  Google Scholar 

  30. Plauger, P., Lee, M., Musser, D., Stepanov, A.A.: C++ Standard Template Library, 1st edn. Prentice Hall PTR, Upper Saddle River (2000)

    Google Scholar 

  31. Reynolds, C., Paragi, Z., Garrett, M.: Pipeline Processing of VLBI Data. Physics (2002)

    Google Scholar 

  32. Romein, J.W.: An efficient work-distribution strategy for gridding radio-telescope data on GPUs. In: Proceedings of the 26th ACM International Conference on Supercomputing, ICS 2012, pp. 321–330. ACM, New York (2012)

    Google Scholar 

  33. Rosenfeld, D.: An optimal and efficient new gridding algorithm using singular value decomposition. Magn. Reson. Med. 40(1), 14–23 (1998)

    Article  MathSciNet  Google Scholar 

  34. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU Programming, 1st, edn. Addison-Wesley Professional, Boston (2010)

    Google Scholar 

  35. Sinnott, R.W.: Virtues of the Haversine, vol. 68, p. 158 (1984)

    Google Scholar 

  36. Sum, J., Leung, C.S., Cheung, R.C.C., Ho, T.Y.: HEALPIX DCT technique for compressing PCA-based illumination adjustable images. Neural Comput. Appl. 22(7), 1291–1300 (2013)

    Article  Google Scholar 

  37. Tingay, S.J., et al.: The Murchison widefield array: the square kilometre array precursor at low radio frequencies. Publications of the Astronomical Society of Australia, vol. 30, no. 30, pp. 109–121 (2013)

    Google Scholar 

  38. Vincenty, T.: Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev. 23(176), 88–93 (1975)

    Article  Google Scholar 

  39. Wells, D.C., Greisen, E.W.: Fits: a flexible image transport system, vol. 44, p. 363 (1981)

    Google Scholar 

  40. Winkel, B., Lenz, D., Flöer, L.: Cygrid: a fast cython-powered convolution-based gridding module for python. Astron. Astrophys. 591, A12 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Benjamin Winkel for providing the Cython code of the cygrid method.

This work is supported by the Joint Research Fund in Astronomy (U1731125, U1531111) under a cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS). This work is also supported by the Young Researcher Grant of National Astronomical Observatories, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, Q. et al. (2018). HyGrid: A CPU-GPU Hybrid Convolution-Based Gridding Algorithm in Radio Astronomy. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11334. Springer, Cham. https://doi.org/10.1007/978-3-030-05051-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05051-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05050-4

  • Online ISBN: 978-3-030-05051-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics