Abstract
The recommendation system is one of the most widely used applications in E-commerce. By studying the user’s preferences, we can recommend underlying contents for the user from the mass merchandise information. However, most recommendation systems pay much attention on popular products, just ignore those products that are currently not popular but potential for excavation. Our recommendation system based on RFN (Reverse Furthest Neighbor) queries follows the idea of mining popular products in the niche market. We improve the traditional collaborative filtering recommendation algorithm and adopt a collaborative filtering algorithm based on expert users. The modified algorithm can recommend products with potential value based on the power law, which make the distribution of minority mined more adequately by the users. The experimental results show that the recommendation system has high recommendation quality and practical value.
This work is supported by the National Natural Science Foundation of China (61672284, 41301407), the Funding of Security Ability Construction of Civil Aviation Administration of China (AS-SA2015/21), the Innovation Funding of Nanjing University of Aeronautics and Astronautics (NJ20160028, NT2018028, NS2018057).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bobadilla, J., Ortega, F., Hernando, A.: Recommender systems survey. Knowl.-Based Syst. 46(1), 109–132 (2013)
Xu, H.-L., Wu, X., Li, X.-D., Yan, B.-P.: Comparison study of internet recommendation system. J. Softw. 20(2), 350–363 (2009)
Hussein, T.: Context-aware recommender systems. In: ACM Conference on Recommender Systems, pp. 349–350. ACM (2011)
Meng, X.W., Xun, H.U., Wang, L.C., et al.: Mobile recommender systems and their applications. J. Softw. 24(1), 91–108 (2013)
Anderson, C.: The long tail. Wired Mag. 12(10), 170–177 (2004)
Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)
Yang, X., Steck, H., Guo, Y., et al.: On top-k recommendation using social networks. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 67–74. ACM (2012)
Khribi, M.K., Jemni, M., Nasraoui, O.: Automatic recommendations for e-learning personalization based on web usage mining techniques and information retrieval. In: Eighth IEEE International Conference on Advanced Learning Technologies, ICALT 2008, pp. 241–245. IEEE (2008)
Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Analyzing user modeling on Twitter for personalized news recommendations. In: Konstan, Joseph A., Conejo, R., Marzo, José L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22362-4_1
Yao, B., Li, F., Kumar, P.: Reverse furthest neighbors in spatial databases. In: IEEE International Conference on Data Engineering, pp. 664–675. IEEE (2009)
Liu, J., Chen, H., Furuse, K., Kitagawa, H.: An efficient algorithm for arbitrary reverse furthest neighbor queries. In: Sheng, Quan Z., Wang, G., Jensen, Christian S., Xu, G. (eds.) APWeb 2012. LNCS, vol. 7235, pp. 60–72. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29253-8_6
Wang, S., Cheema, M.A., Lin, X., et al.: Efficiently computing reverse k furthest neighbors. In: ICDE 2016, pp. 1110–1121 (2016)
Goldberg, D., Nichols, D., Oki, B.M., et al.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)
Sarwar, B., Karypis, G., Konstan, J., et al.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM (2001)
Zhao, Z.D., Shang, M.S.: User-based collaborative-filtering recommendation algorithms on hadoop. In: International Conference on Knowledge Discovery and Data Mining, pp. 478–481. IEEE (2010)
Pirasteh, P., Jung, Jason J., Hwang, D.: Item-based collaborative filtering with attribute correlation: a case study on movie recommendation. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014. LNCS (LNAI), vol. 8398, pp. 245–252. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05458-2_26
Vozalis, E.G., Konstantinos, G.M.: Recommender systems: an experimental comparison of two filtering algorithms. In: Proceedings of the 9th Panhellenic Conference in Informatics, PCI 2003 (2003)
Ma, H., Jia, M., Zhang, D., et al.: Combining tag correlation and user social relation for microblog recommendation. Inf. Sci. Int. J. 385(C), 325–337 (2017)
Guo, D., Zhao, H.: Matrix factorization recommendation algorithm fusing tag popularity and time weight. Minicomput. Syst. 37(2), 293–297 (2016)
Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: ACM SIGCOMM Computer Communication Review, vol. 29, no. 4, pp. 251–262. ACM (1999)
Clementi, F., Gallegati, M.: Power law tails in the Italian personal income distribution. Phys. A: Stat. Mech. Appl. 350(2–4), 427–438 (2005)
Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)
Zheng, W., Li, B., Wang, Y., Qin, X.: Group recommendation algorithm model combined with preference interaction. Minicomput. Syst. 39(2), 372–378 (2018)
Li, B., et al.: Dynamic reverse furthest neighbor querying algorithm of moving objects. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Quan Z. (eds.) ADMA 2016. LNCS (LNAI), vol. 10086, pp. 266–279. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49586-6_18
Zheng, W., et al.: Group recommender model based on preference interaction. In: Cong, G., Peng, W.-C., Zhang, W.E., Li, C., Sun, A. (eds.) ADMA 2017. LNCS (LNAI), vol. 10604, pp. 132–147. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69179-4_10
Yue, L., Chen, W., Li, X., Zuo, W., Yin, M.: A survey of sentiment analysis in social media. Knowl. Inf. Syst. 1–47 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, K., Li, B., Wan, S., Zhang, A., Guan, D. (2018). Research on Commodity Recommendation Algorithm Based on RFN. In: Gan, G., Li, B., Li, X., Wang, S. (eds) Advanced Data Mining and Applications. ADMA 2018. Lecture Notes in Computer Science(), vol 11323. Springer, Cham. https://doi.org/10.1007/978-3-030-05090-0_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-05090-0_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05089-4
Online ISBN: 978-3-030-05090-0
eBook Packages: Computer ScienceComputer Science (R0)