Abstract
In this paper we provide a complete characterisation of transitive fractional jumps. In particular, we prove that they can only arise from transitive projective automorphisms apart from a couple of degenerate cases which we entirely classify. Furthermore, we prove that such construction is feasible for arbitrarily large dimension by exhibiting an infinite class of projectively primitive polynomials whose companion matrix can be used to define a full orbit sequence over an affine space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amadio Guidi, F., Lindqvist, S., Micheli, G.: Full orbit sequences in affine spaces via fractional jumps and pseudorandom number generation. arXiv preprint arXiv:1712.05258v2 (2017). (To appear in Mathematics of Computation)
Brandstätter, N., Winterhof, A.: Some notes on the two-prime generator of order 2. IEEE Trans. Inf. Theory 51(10), 3654–3657 (2005)
Cao, X.: On the order of the polynomial \(x^p-x-a\). Cryptology ePrint Archive, Report 2010/034 (2010). https://eprint.iacr.org/2010/034.pdf
Chou, W.-S.: On inversive maximal period polynomials over finite fields. Appl. Algebra Eng. Commun. Comput. 6(4), 245–250 (1995)
Eichenauer-Herrmann, J.: Inversive congruential pseudorandom numbers avoid the planes. Math. Comp. 56(193), 297–301 (1991)
El-Mahassni, E.D., Gomez, D.: On the distribution of nonlinear congruential pseudorandom numbers of higher orders in residue rings. In: Bras-Amorós, M., Høholdt, T. (eds.) AAECC 2009. LNCS, vol. 5527, pp. 195–203. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02181-7_21
Ferraguti, A., Micheli, G., Schnyder, R.: On sets of irreducible polynomials closed by composition. In: Duquesne, S., Petkova-Nikova, S. (eds.) WAIFI 2016. LNCS, vol. 10064, pp. 77–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55227-9_6
Gómez-Pérez, D., Ostafe, A., Shparlinski, I.E.: Algebraic entropy, automorphisms and sparsity of algebraic dynamical systems and pseudorandom number generators. Math. Comput. 83(287), 1535–1550 (2014)
Gutierrez, J., Shparlinski, I.E., Winterhof, A.: On the linear and nonlinear complexity profile of nonlinear pseudorandom number generators. IEEE Trans. Inf. Theory 49(1), 60–64 (2003)
Heath-Brown, D.R., Micheli, G.: Irreducible polynomials over finite fields produced by composition of quadratics. arXiv preprint arXiv:1701.05031 (2017)
Lang, S.: Algebra - Revised Third Edition. Graduate Texts in Mathematics, vol. 211. Springer, New York (2002). https://doi.org/10.1007/978-1-4613-0041-0
Niederreiter, H., Shparlinski, I.E.: Recent advances in the theory of nonlinear pseudorandom number generators. In: Fang, K.T., Niederreiter, H., Hickernell, F.J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 86–102. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-56046-0_6
Niederreiter, H., Shparlinski, I.E.: Dynamical systems generated by rational functions. In: Fossorier, M., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 6–17. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44828-4_2
Ostafe, A.: Pseudorandom vector sequences derived from triangular polynomial systems with constant multipliers. In: Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 62–72. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13797-6_5
Ostafe, A., Pelican, E., Shparlinski, I.E.: On pseudorandom numbers from multivariate polynomial systems. Finite Fields Appl. 16(5), 320–328 (2010)
Ostafe, A., Shparlinski, I.E.: On the degree growth in some polynomial dynamical systems and nonlinear pseudorandom number generators. Math. Comput. 79(269), 501–511 (2010)
Ostafe, A., Shparlinski, I.E.: On the length of critical orbits of stable quadratic polynomials. Proc. Am. Math. Soc. 138(8), 2653–2656 (2010)
Topuzoğlu, A., Winterhof, A.: Pseudorandom sequences. In: Garcia, A., Stichtenoth, H. (eds.) Topics in Geometry, Coding Theory and Cryptography. AA, vol. 6, pp. 135–166. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-5334-4_4
Winterhof, A.: Recent results on recursive nonlinear pseudorandom number generators. In: Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol. 6338, pp. 113–124. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15874-2_9
Acknowledgment
The authors are grateful to Andrea Ferraguti for preliminary reading of this manuscript, and for useful discussions and suggestions. The second author is thankful to the Swiss National Science Foundation grant number 171248.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Amadio Guidi, F., Micheli, G. (2018). Fractional Jumps: Complete Characterisation and an Explicit Infinite Family. In: Budaghyan, L., RodrÃguez-HenrÃquez, F. (eds) Arithmetic of Finite Fields. WAIFI 2018. Lecture Notes in Computer Science(), vol 11321. Springer, Cham. https://doi.org/10.1007/978-3-030-05153-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-05153-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05152-5
Online ISBN: 978-3-030-05153-2
eBook Packages: Computer ScienceComputer Science (R0)