Abstract
In this paper, we enumerate superspecial hyperelliptic curves of genus 4 over finite fields \(\mathbb {F}_q\) for small q. This complements our preceding results in the non-hyperelliptic case. We give a feasible algorithm to enumerate superspecial hyperelliptic curves of genus g over \(\mathbb {F}_q\) in the case that q and \(2g+2\) are coprime and \(q>2g+1\). We executed the algorithm for \((g,q)= (4,11^2)\), \((4,13^2)\), \((4,17^2)\) and (4, 19) with our implementation on a computer algebra system Magma. Moreover, we found many maximal hyperelliptic curves and some minimal hyperelliptic curves over \(\mathbb {F}_{q}\) from among enumerated superspecial curves.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multivariate systems over finite fields. J. Math. Crypt. 3, 177–197 (2009)
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)
Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Univ. Hamburg 14(1), 197–272 (1941)
Ekedahl, T.: On supersingular curves and abelian varieties. Math. Scand. 60, 151–178 (1987)
Fuhrmann, R., Garcia, A., Torres, F.: On maximal curves. J. Number Theory 67, 29–51 (1997)
van der Geer, G., et al.: Tables of Curves with Many Points (2009). http://www.manypoints.org. Accessed 5 Apr 2018
González, J.: Hasse-Witt matrices for the Fermat curves of prime degree. Tohoku Math. J. 49(2), 149–163 (1997). MR 1447179 (98b:11064)
Hartshorne, R.: Algebraic Geometry, GTM 52. Springer, Heidelberg (1977). https://doi.org/10.1007/978-1-4757-3849-0
Hashimoto, K.: Class numbers of positive definite ternary quaternion Hermitian forms. Proc. Japan Acad. Ser. A Math. Sci. 59(10), 490–493 (1983)
Hashimoto, K., Ibukiyama, T.: On class numbers of positive definite binary quaternion Hermitian forms II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 695–699 (1982)
Hurt, N.E.: Many Rational Points: Coding Theory and Algebraic Geometry. Kluwer Academic Publishers, Dordrecht (2003)
Ibukiyama, T.: On rational points of curves of genus \(3\) over finite fields. Tohoku Math. J. 45, 311–329 (1993)
Ibukiyama, T., Katsura, T.: On the field of definition of superspecial polarized abelian varieties and type numbers. Compositio Math. 91(1), 37–46 (1994)
Kudo, M., Harashita, S.: Superspecial curves of genus \(4\) in small characteristic. Finite Fields Their Appl. 45, 131–169 (2017)
Kudo, M., Harashita, S.: Enumerating superspecial hyperelliptic curves of genus \(4\) over small finite fields, in preparation
Kudo, M. and Harashita, S.: Enumerating superspecial curves of genus \(4\) over prime fields, arXiv: 1702.05313 [math.AG] (2017)
Kudo, M., Harashita, S.: Enumerating superspecial curves of genus \(4\) over prime fields (abstract version of [16]). In: Proceedings of The Tenth International Workshop on Coding and Cryptography 2017 (WCC 2017), 18–22 September 2017, Saint-Petersburg, Russia (2017). http://wcc2017.suai.ru/proceedings.html
Li, K.-Z., Oort, F.: Moduli of Supersingular Abelian Varieties. Lecture Notes in Mathematics, vol. 1680. Springer, Berlin (1998). https://doi.org/10.1007/BFb0095931
Manin, Y. I.: On the theory of Abelian varieties over a field of finite characteristic, AMS Transl. Ser. 2 50, 127–140 (1966). Translated by G. Wagner (originally published in Izv. Akad. Nauk SSSR Ser. Mat. 26, 281–292 (1962))
Nygaard, N.O.: Slopes of powers of Frobenius on crystalline cohomology. Ann. Sci. École Norm. Sup. 14(4), 369–401 (1982, 1981)
Özbudak, F., Saygı, Z.: Explicit maximal and minimal curves over finite fields of odd characteristics. Finite Fields Their Appl. 42, 81–92 (2016)
Serre, J.-P.: Nombre des points des courbes algebrique sur \(\mathbb{F}_{q}\). Théor. Nombres Bordeaux 83(2), 22 (1983, 1982)
Tafazolian, S.: A note on certain maximal hyperelliptic curves. Finite Fields Their Appl. 18, 1013–1016 (2012)
Tafazolian, S., Torres, F.: On the curve \(y^n=x^m +x\) over finite fields. J. Number Theory 145, 51–66 (2014)
Xue, J., Yang, T.-C., Yu, C.-F.: On superspecial abelian surfaces over finite fields. Doc. Math. 21, 1607–1643 (2016)
Yui, N.: On the Jacobian varieties of hyperelliptic curves over fields of characterisctic \(p>2\). J. Algebr. 52, 378–410 (1978)
Data base of superspecial curves of genus \(4\) over finite fields and their algebraic closures. http://www2.math.kyushu-u.ac.jp/~m-kudo/Ssp-curves-genus-4.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Kudo, M., Harashita, S. (2018). Superspecial Hyperelliptic Curves of Genus 4 over Small Finite Fields. In: Budaghyan, L., Rodríguez-Henríquez, F. (eds) Arithmetic of Finite Fields. WAIFI 2018. Lecture Notes in Computer Science(), vol 11321. Springer, Cham. https://doi.org/10.1007/978-3-030-05153-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-05153-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05152-5
Online ISBN: 978-3-030-05153-2
eBook Packages: Computer ScienceComputer Science (R0)