Skip to main content

Towards Accuracy in Similarity Analysis of Android Applications

  • Conference paper
  • First Online:
Information Systems Security (ICISS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11281))

Included in the following conference series:

  • 1208 Accesses

Abstract

Android malware is most commonly delivered to a user through the many open app marketplaces. Several recent attacks have shown that the same malware infects different apps in the app market. Automated triaging by computing similarity of apps to known software components can help learn the evolution and propagation of malware. While the emphasis of existing research is on detecting repackaged apps, a similarity analysis system that can identify similar portions of code in dissimilar apps, is important. Only few public tools exist that furnish these details accurately. In this paper, we present a proof-of-concept of an analysis system that compares Android apps using a technique that combines class and method features of an app. We use a two-step process that first compute similar classes and then compute similar methods of those classes. To identify similar classes, we propose a novel set of software birthmarks. We use Normalized Compression Distance to compute similar methods. The birthmarks are evaluated on a set of over 65,000 classes from 60 APKs. To evaluate the performance of our tool, we establish ground truth by manually reverse engineering each app. The proposed system is compared with Google’s androsim, the only open-source tool for similarity analysis that also uses NCD. Our approach shows an improvement in accuracy in the worst-case when comapred to androsim. Finally, we furnish a case-study of our system to detect fake and repackaged apps by analyzing 1470 Android apps from various sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Androguard (2016). https://code.google.com/p/androguard/

  2. Android: Configure Apps With Over 64K Methods (2016). https://developer.android.com/studio/build/multidex.html

  3. Cebrián, M., Alfonseca, M., Ortega, A.: Common pitfalls using the normalized compression distance: what to watch out for in a compressor. Commun. Inf. Syst. 5, 367–384 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Chen, K., Liu, P., Zhang, Y.: Achieving accuracy and scalability simultaneously in detecting application clones on Android markets. In: ICSE (2014)

    Google Scholar 

  5. Chen, K., et al.: Finding unknown malice in 10 seconds: massing vetting for new threats at Google-pay scale. USENIX (2015)

    Google Scholar 

  6. Chen, S., Ma, B., Zhang, K.: On the similarity metric and the distance metric. Theor. Comput. Sci. 410, 2365–2376 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chen, X., Francia, B., Li, M., McKinnon, B., Seker, A.: Shared information and program plagiarism detection. IEEE Trans. Inf. Theory 50, 1545–1551 (2004)

    Article  MathSciNet  Google Scholar 

  8. Crussell, J., Gibler, C., Chen, H.: Attack of the clones: detecting cloned applications on Android markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 37–54. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-1_3

    Chapter  Google Scholar 

  9. Desnos, A.: Android: static analysis using similarity distance. In: AusPDC (2010)

    Google Scholar 

  10. Desnos, A.: Measuring similarity of Android applications via reversing and k-gram birthmarking. In: AusPDC (2010)

    Google Scholar 

  11. Fan, M., Liu, J., Wang, W., Li, H., Tian, Z., Liu, T.: DAPASA: detecting Android piggybacked apps through sensitive subgraph analysis. IEEE Trans. Inf. Forensics Secur. 12, 1772–1785 (2017)

    Article  Google Scholar 

  12. Faruki, P., et al.: Android security: a survey of issues, malware penetration, and defenses. IEEE Commun. Surv. Tutor. 17, 998–1022 (2015)

    Article  Google Scholar 

  13. Faruki, P., Ganmoor, V., Laxmi, V., Gaur, M., Bharmal, A.: AndroSimilar: robust statistical feature signature for Android malware detection. In: AusPDC (2010)

    Google Scholar 

  14. Gadyatskaya, O., Lezza, A.-L., Zhauniarovich, Y.: Evaluation of resource-based app repackaging detection in Android. In: Brumley, B.B., Röning, J. (eds.) NordSec 2016. LNCS, vol. 10014, pp. 135–151. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47560-8_9

    Chapter  Google Scholar 

  15. Gascon, H., Yamaguchi, F., Arp, D.: Structural detection of Android malware using embedded call graphs (2018)

    Google Scholar 

  16. Guan, Q., Huang, H., Luo, W., Zhu, S.: Semantics-based repackaging detection for mobile apps. In: Caballero, J., Bodden, E., Athanasopoulos, E. (eds.) ESSoS 2016. LNCS, vol. 9639, pp. 89–105. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30806-7_6

    Chapter  Google Scholar 

  17. Gurulian, I., Markantonakis, K., Cavallaro, L., Mayes, K.: You can’t touch this: consumer-centric Android application repackaging detection. Future Gener. Comput. Syst. 65, 1–9 (2016)

    Article  Google Scholar 

  18. Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: a scalable system for detecting code reuse among Android applications. In: Flegel, U., Markatos, E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 62–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37300-8_4

    Chapter  Google Scholar 

  19. Haoshi, H.: Detecting repackaged Android apps using server-side analysis. Master’s thesis, Eindhoven University of Technology (2016)

    Google Scholar 

  20. Huang, H., Zhu, S., Liu, P., Wu, D.: A framework for evaluating mobile app repackaging detection algorithms. In: Huth, M., Asokan, N., Čapkun, S., Flechais, I., Coles-Kemp, L. (eds.) Trust 2013. LNCS, vol. 7904, pp. 169–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38908-5_13

    Chapter  Google Scholar 

  21. Ishii, Y., Watanabe, T., Akiyama, M., Mori, T.: Clone or relative?: understanding the origins of similar Android apps. In: IWSPA (2016)

    Google Scholar 

  22. Ishio, T., Sakaguchi, Y., Ito, K., Inoue, K.: Source file set search for clone-and-own reuse analysis. In: ICSE (2017)

    Google Scholar 

  23. Kang, H., Jang, J., Mohaisen, A., Kim, H.K.: Detecting and classifying Android malware using static analysis along with creator information. IJDSN 11, 479174 (2015)

    Google Scholar 

  24. Kang, S., Shim, H., Cho, S., Park, M., Han, S.: A robust and efficient birthmark-based Android application filtering system. In: RACS (2014)

    Google Scholar 

  25. Kim, D., Gokhale, A., Ganapathy, V., Srivastava, A.: Detecting plagiarized mobile apps using API birthmarks. Autom. Softw. Eng. 23, 591–618 (2016)

    Article  Google Scholar 

  26. Kornblum, J.D.: Identifying almost identical files using context triggered piece-wise hashing. Digit. Invest. 3, 91–97 (2006)

    Article  Google Scholar 

  27. Li, L., Bissyande, T.F., Klein, J., Traon, Y.L.: An investigation into the use of common libraries in Android apps. CoRR (2015)

    Google Scholar 

  28. Li, L., et al.: On locating malicious code in piggybacked Android apps. J. Comput. Sci. Technol. 32, 1108–1124 (2017)

    Article  Google Scholar 

  29. Li, L., et al.: Automatically locating malicious packages in piggybacked Android apps. In: MOBILESoft (2017)

    Google Scholar 

  30. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE Trans. Inf. Theory 50, 3250–3264 (2004)

    Article  MathSciNet  Google Scholar 

  31. Lina, S., et al.: AppIS: protect Android apps against runtime repackaging attacks. In: ICPADS (2017)

    Google Scholar 

  32. Linares-Vásquez, M., Holtzhauer, A., Poshyvanyk, D.: On automatically detecting similar Android apps. In: IEEE ICPC (2016)

    Google Scholar 

  33. Lyu, F., Lin, Y., Yang, J.: An efficient and packing-resilient two-phase Android cloned application detection approach. Mob. Inf. Syst. 2017, 12 p. (2017). https://doi.org/10.1155/2017/6958698. Article ID 6958698

    Article  Google Scholar 

  34. Pouik, G.: Phrack (2016). http://phrack.org/issues/68/15.html#article

  35. Salem, A.: Stimulation and detection of Android repackaged malware with active learning. arXiv (2018)

    Google Scholar 

  36. Soh, C., Tan, H.B.K., Arnatovich, Y.L., Wang, L.: Detecting clones in Android applications through analyzing user interfaces. In: ICSE (2015)

    Google Scholar 

  37. Sophos (2018). https://nakedsecurity.sophos.com/2017/08/24/malware-rains-on-googles-android-oreo-parade/

  38. Suarezl, G., Tapiador, J.E., Peris-Lopez, P., Blasco, J.: Dendroid: a text mining approach to analyzing and classifying code structures in Android malware families. Expert Syst. Appl. 41, 1104–1117 (2014)

    Article  Google Scholar 

  39. Sun, M., Li, M., Lui, J.C.S.: DroidEagle: seamless detection of visually similar Android apps. In: ACM WiSec (2015)

    Google Scholar 

  40. Tamada, H.: (2016). http://stigmata.osdn.jp/

  41. Tamada, H., Nakamura, M., Monden, A., Matsumoto, K.I.: Java birthmarks - detecting the software theft. IEICE Trans. 88, 2148–2158 (2005)

    Article  Google Scholar 

  42. Thomas, D.R., Beresford, A.R., Rice, A.C.: Security metrics for the Android ecosystem. In: SPSMCCS. ACM (2015)

    Google Scholar 

  43. Tian, K., Yao, D., Ryder, B.G., Tan, G.: Analysis of code heterogeneity for high-precision classification of repackaged malware. In: SPW (2016)

    Google Scholar 

  44. Gayoso Martínez, V., Hernández Álvarez, F., Hernández Encinas, L.: State of the art in similarity preserving hashing functions. SAM (2014)

    Google Scholar 

  45. Wang, H., Guo, Y., Ma, Z., Chen, X.: WuKong: a scalable and accurate two-phase approach to Android app clone detection. In: ISSTA. ACM SIGSOFT (2015)

    Google Scholar 

  46. Yue, S., et al.: RepDroid: an automated tool for Android application repackaging detection. In: ICPC (2017)

    Google Scholar 

  47. Zhauniarovich, Y., Gadyatskaya, O., Crispo, B., La Spina, F., Moser, E.: FSquaDRA: fast detection of repackaged applications. In: Atluri, V., Pernul, G. (eds.) DBSec 2014. LNCS, vol. 8566, pp. 130–145. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43936-4_9

    Chapter  Google Scholar 

  48. Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, scalable detection of “piggybacked” mobile applications. In: CODASPY. ACM (2013)

    Google Scholar 

  49. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone applications in third-party Android marketplaces. In: CODASPY. ACM (2013)

    Google Scholar 

  50. Zhou, Y., Jiang, X.: Dissecting Android malware: characterization and evolution. In: IEEE Symposium on S&P. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sreesh Kishore or Renuka Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kishore, S., Kumar, R., Rajan, S. (2018). Towards Accuracy in Similarity Analysis of Android Applications. In: Ganapathy, V., Jaeger, T., Shyamasundar, R. (eds) Information Systems Security. ICISS 2018. Lecture Notes in Computer Science(), vol 11281. Springer, Cham. https://doi.org/10.1007/978-3-030-05171-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05171-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05170-9

  • Online ISBN: 978-3-030-05171-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics