Skip to main content

Adaptive Neural Control for Robotic Manipulators Under Constrained Task Space

  • Conference paper
  • First Online:
Social Robotics (ICSR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11357))

Included in the following conference series:

  • 2585 Accesses

Abstract

A fundamental requirement in human-robot interaction is the capability for motion in the constrained task space. The control design for robotic manipulators is investigated in this paper, subject to uncertainties and constrained task space. The neural networks (NN) are employed to estimate the uncertainty of robotic dynamics, while the integral barrier Lyapunov Functional (iBLF) is used to handle the effect of constraint. With the proposed control strategy, the system output can converge to an adjustable constrained space without violating the predefined constrained region. Semi-globally uniformly ultimate boundedness of the closed-loop system is guaranteed via Lyapunov’s stability theory. Simulation examples are provided to illustrate the performance of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avanzini, G.B., Ceriani, N.M., Zanchettin, A.M., Rocco, P., Bascetta, L.: Safety control of industrial robots based on a distributed distance sensor. IEEE Trans. Control. Syst. Technol. 22(6), 2127–2140 (2014)

    Article  Google Scholar 

  2. Cheah, C., Liu, C., Slotine, J.J.E.: Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Trans. Autom. Control 51(6), 1024–1029 (2006)

    Article  MathSciNet  Google Scholar 

  3. Dong, Y., Ren, B.: UDE-based variable impedance control of uncertain robot systems. IEEE Trans. Syst., Man, Cybern.: Syst. (2017)

    Google Scholar 

  4. Fink, J.: Anthropomorphism and human likeness in the design of robots and human-robot interaction. In: Ge, S.S., Khatib, O., Cabibihan, J.-J., Simmons, R., Williams, M.-A. (eds.) ICSR 2012. LNCS (LNAI), vol. 7621, pp. 199–208. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34103-8_20

    Chapter  Google Scholar 

  5. Ge, S.S., Lee, T.H., Harris, C.J.: Adaptive Neural Network Control of Robotic Manipulators. World Scientific, River Edge (1998)

    Book  Google Scholar 

  6. Goodrich, M.A., Schultz, A.C., et al.: Human-robot interaction: a survey. Found. Trends Hum.-Comput. Interact. 1(3), 203–275 (2008)

    Article  Google Scholar 

  7. Hancock, P.A., Billings, D.R., Schaefer, K.E., Chen, J.Y., De Visser, E.J., Parasuraman, R.: A meta-analysis of factors affecting trust in human-robot interaction. Hum. Factors 53(5), 517–527 (2011)

    Article  Google Scholar 

  8. He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016)

    Article  Google Scholar 

  9. He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. 29, 1174–1186 (2017)

    Article  Google Scholar 

  10. He, W., Ge, S.S., How, B.V.E., Choo, Y.S., Hong, K.S.: Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4), 722–732 (2011)

    Article  MathSciNet  Google Scholar 

  11. He, W., Zhang, S., Ge, S.S.: Adaptive control of a flexible crane system with the boundary output constraint. IEEE Trans. Ind. Electron. 61(8), 4126–4133 (2014)

    Article  Google Scholar 

  12. Hogan, N.: Impedance control - an approach to manipulation. I - Theory. II - Implementation. III - Applications. J. Dyn. Syst., Meas., Control 107, 1–24 (1985)

    Article  Google Scholar 

  13. Kim, B.S., Yoo, S.J.: Adaptive control of nonlinear pure-feedback systems with output constraints: integral barrier Lyapunov functional approach. Int. J. Control, Autom. Syst. 13(1), 249–256 (2015)

    Article  Google Scholar 

  14. Lacevic, B., Rocco, P., Zanchettin, A.M.: Safety assessment and control of robotic manipulators using danger field. IEEE Trans. Robot. 29(5), 1257–1270 (2013)

    Article  Google Scholar 

  15. Lewis, F., Jagannathan, S., Yesildirak, A.: Neural Network Control of Robot Manipulators and Non-Linear Systems. CRC Press, Boca Raton (1998)

    Google Scholar 

  16. Li, D.J., Li, J., Li, S.: Adaptive control of nonlinear systems with full state constraints using integral barrier Lyapunov functionals. Neurocomputing 186, 90–96 (2016)

    Article  Google Scholar 

  17. Li, Y., Ge, S.S.: Human-robot collaboration based on motion intention estimation. IEEE/ASME Trans. Mechatron. 19(3), 1007–1014 (2014)

    Article  Google Scholar 

  18. Li, Z., Huang, Z., He, W., Su, C.Y.: Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Trans. Ind. Electron. 64(2), 1664–1674 (2017)

    Article  Google Scholar 

  19. Li, Z., Su, C., Wang, L., Chen, Z., Chai, T.: Nonlinear disturbance observer based control design for a robotic exoskeleton incorporating fuzzy approximation. IEEE Trans. Ind. Electron. 62(9), 5763–5775 (2015)

    Article  Google Scholar 

  20. Li, Z., Yang, C., Su, C.Y., Deng, S., Sun, F., Zhang, W.: Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction. IEEE Trans. Fuzzy Syst. 23(4), 1044–1056 (2014)

    Article  Google Scholar 

  21. Liu, Y.J., Tong, S.C.: Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica 76(2), 143–152 (2017)

    Article  MathSciNet  Google Scholar 

  22. Liu, Y.J., Tong, S.: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64(C), 70–75 (2016)

    Article  MathSciNet  Google Scholar 

  23. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  Google Scholar 

  24. Mehdi, H., Boubaker, O.: Stiffness and impedance control using Lyapunov theory for robot-aided rehabilitation. Int. J. Soc. Robot. 4(1), 107–119 (2012)

    Article  Google Scholar 

  25. Meng, W., Yang, Q., Sun, Y.: Adaptive neural control of nonlinear MIMO systems with time-varying output constraints. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1074–1085 (2015)

    Article  MathSciNet  Google Scholar 

  26. Slotine, J.J.E., Li, W.: On the adaptive control of robot manipulators. Int. J. Robot. Res. 6, 49–59 (1987)

    Article  Google Scholar 

  27. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  28. Tang, Z.L., Ge, S.S., Tee, K.P., He, W.: Adaptive neural control for an uncertain robotic manipulator with joint space constraints. Int. J. Control 89(7), 1428–1446 (2015)

    Article  MathSciNet  Google Scholar 

  29. Tee, K.P., Ge, S.S.: Control of state-constrained nonlinear systems using integral barrier Lyapunov functionals. In: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), pp. 3239–3244. IEEE (2012)

    Google Scholar 

  30. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  Google Scholar 

  31. Tee, K.P., Ren, B., Ge, S.S.: Control of nonlinear systems with time-varying output constraints. Automatica 47(11), 2511–2516 (2011)

    Article  MathSciNet  Google Scholar 

  32. Yi, S.: Stable walking of qauadruped robot by impedance control for body motion. Int. J. Control Autom. 6(2), 99–110 (2013)

    Google Scholar 

  33. Zhang, H., Luo, Y., Liu, D.: Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints. IEEE Trans. Neural Netw. 20(9), 1490–1503 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sainan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, S., Tang, Z. (2018). Adaptive Neural Control for Robotic Manipulators Under Constrained Task Space. In: Ge, S., et al. Social Robotics. ICSR 2018. Lecture Notes in Computer Science(), vol 11357. Springer, Cham. https://doi.org/10.1007/978-3-030-05204-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05204-1_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05203-4

  • Online ISBN: 978-3-030-05204-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics