Skip to main content

On Gaps in Digital Objects

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11255))

Included in the following conference series:

Abstract

Different formulae were proposed in the literature for the number of gaps in digital objects. We give several new formulae for the number of 0-gaps in 2D, based on the known connection between the number of 0-gaps and the Euler characteristic of 2D digital objects. We also present two new, short and intuitive proofs of one of the two known equivalent formulae for the number of \((n-2)\)-gaps in nD digital objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andres, E., Acharya, R., Sibata, C.H.: Discrete analytical hyperplanes. CVGIP: Graph. Model Image Process. 59(5), 302–309 (1997)

    Google Scholar 

  2. Bishnu, A., Bhattacharya, B.B., Kundu, M.K., Murthy, C.A., Acharya, T.: On-chip computation of Euler number of a binary image for efficient database search. In: Proceedings of the 2001 International Conference on Image Processing, ICIP, pp. 310–313 (2001)

    Google Scholar 

  3. Bishnu, A., Bhattacharya, B.B., Kundu, M.K., Murthy, C.A., Acharya, T.: A pipeline architecture for computing the Euler number of a binary image. J. Syst. Archit. 51(8), 470–487 (2005)

    Article  Google Scholar 

  4. Boutry, N., Géraud, T., Najman, L.: How to make nD images well-composed without interpolation. In: 2015 IEEE International Conference on Image Processing, ICIP 2015, pp. 2149–2153 (2015)

    Google Scholar 

  5. Bribiesca, E.: Computation of the Euler number using the contact perimeter. Comput. Math. Appl. 60(5), 1364–1373 (2010)

    Article  MathSciNet  Google Scholar 

  6. Brimkov, V.E.: Formulas for the number of \((n-2)\)-gaps of binary objects in arbitrary dimension. Discrete Appl. Math. 157(3), 452–463 (2009)

    Article  MathSciNet  Google Scholar 

  7. Brimkov, V.E., Barneva, R.: Linear time constant-working space algorithm for computing the genus of a digital object. In: Bebis, G., et al. (eds.) ISVC 2008. LNCS, vol. 5358, pp. 669–677. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89639-5_64

    Chapter  Google Scholar 

  8. Brimkov, V.E., Klette, R.: Border and surface tracing - theoretical foundations. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 577–590 (2008)

    Article  Google Scholar 

  9. Brimkov, V.E., Maimone, A., Nordo, G.: An explicit formula for the number of tunnels in digital objects. CoRR abs/cs/0505084 (2005). http://arxiv.org/abs/cs/0505084

  10. Brimkov, V.E., Maimone, A., Nordo, G.: Counting gaps in binary pictures. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 16–24. Springer, Heidelberg (2006). https://doi.org/10.1007/11774938_2

    Chapter  Google Scholar 

  11. Brimkov, V.E., Moroni, D., Barneva, R.: Combinatorial relations for digital pictures. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 189–198. Springer, Heidelberg (2006). https://doi.org/10.1007/11907350_16

    Chapter  MATH  Google Scholar 

  12. Brimkov, V.E., Nordo, G., Barneva, R.P., Maimone, A.: Genus and dimension of digital images and their time- and space-efficient computation. Int. J. Shape Model. 14(2), 147–168 (2008)

    Article  MathSciNet  Google Scholar 

  13. Chen, L.: Determining the number of holes of a 2D digital component is easy. CoRR abs/1211.3812 (2012)

    Google Scholar 

  14. Chen, M., Yan, P.: A fast algorithm to calculate the Euler number for binary images. Pattern Recogn. Lett. 8(5), 295–297 (1988)

    Article  Google Scholar 

  15. Cohen-Or, D., Kaufman, A.E.: 3D line voxelization and connectivity control. IEEE Comput. Graph. Appl. 17(6), 80–87 (1997)

    Article  Google Scholar 

  16. Čomić, L., Magillo, P.: Repairing 3D binary images using the BCC grid with a 4-valued combinatorial coordinate system. Inf. Sci., to appear

    Google Scholar 

  17. Čomić, L., Nagy, B.: A topological coordinate system for the diamond cubic grid. Acta Crystallogr. Sect. A 72(5), 570–581 (2016)

    Article  Google Scholar 

  18. Čomić, L., Nagy, B.: A combinatorial coordinate system for the body-centered cubic grid. Graph. Models 87, 11–22 (2016)

    Article  MathSciNet  Google Scholar 

  19. Čomić, L., Nagy, B.: A topological 4-coordinate system for the face centered cubic grid. Pattern Recogn. Lett. 83, 67–74 (2016)

    Article  Google Scholar 

  20. Dey, S., Bhattacharya, B.B., Kundu, M.K., Acharya, T.: A Fast algorithm for computing the euler number of an image and its VLSI implementation. In: 13th International Conference on VLSI Design (VLSI Design 2000), pp. 330–335 (2000)

    Google Scholar 

  21. Dey, S., Bhattacharya, B.B., Kundu, M.K., Bishnu, A., Acharya, T.: A Co-processor for computing the Euler number of a binary image using divide-and-conquer strategy. Fundam. Inf. 76(1–2), 75–89 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Díaz-de-León S., J.L., Sossa-Azuela, J.H.: On the computation of the Euler number of a binary object. Pattern Recognit. 29(3), 471–476 (1996)

    Article  Google Scholar 

  23. Dyer, C.R.: Computing the Euler number of an image from Its quadtree. Comput. Graph. Image Process. 13, 270–276 (1980)

    Article  Google Scholar 

  24. Françon, J., Schramm, J.-M., Tajine, M.: Recognizing arithmetic straight lines and planes. In: Miguet, S., Montanvert, A., Ubéda, S. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 139–150. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-62005-2_12

    Chapter  Google Scholar 

  25. Gray, S.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 20, 551–561 (1971)

    Article  Google Scholar 

  26. He, L., Chao, Y.: A very fast algorithm for simultaneously performing connected-component labeling and Euler number computing. IEEE Trans. Image Process. 24(9), 2725–2735 (2015)

    Article  MathSciNet  Google Scholar 

  27. He, L., Chao, Y., Suzuki, K.: An algorithm for connected-component labeling, hole labeling and Euler number computing. J. Comput. Sci. Technol. 28(3), 468–478 (2013)

    Article  MathSciNet  Google Scholar 

  28. He, L., Yao, B., Zhao, X., Yang, Y., Chao, Y., Ohta, A.: A graph-theory-based algorithm for Euler number computing. IEICE Trans. 98–D(2), 457–461 (2015)

    Article  Google Scholar 

  29. Imiya, A., Eckhardt, U.: The Euler characteristic of discrete object. In: Ahronovitz, E., Fiorio, C. (eds.) DGCI 1997. LNCS, vol. 1347, pp. 161–174. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024838

    Chapter  Google Scholar 

  30. Kenmochi, Y., Imiya, A.: Combinatorial topologies for discrete planes. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 144–153. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39966-7_13

    Chapter  MATH  Google Scholar 

  31. Klette, R., Rosenfeld, A.: Digital Geometry. Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers, San Francisco (2004)

    MATH  Google Scholar 

  32. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graphi. Image Process. 48(3), 357–393 (1989)

    Article  Google Scholar 

  33. Kovalevsky, V.A.: Geometry of Locally Finite Spaces (Computer Agreeable Topology and Algorithms for Computer Imagery). Editing House Dr. Bärbel Kovalevski, Berlin (2008)

    Google Scholar 

  34. Lachaud, J.-O.: Coding cells of digital spaces: a framework to write generic digital topology algorithms. Electron. Notes Discrete Math. 12, 337–348 (2003)

    Article  MathSciNet  Google Scholar 

  35. Latecki, L.J.: 3D well-composed pictures. CVGIP: Graph. Model Image Process. 59(3), 164–172 (1997)

    Google Scholar 

  36. Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)

    Article  Google Scholar 

  37. Lin, X., Sha, Y., Ji, J., Wang, Y.: A proof of image Euler number formula. Sci. China Ser. F: Inf. Sci. 49(3), 364–371 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Maimone, A., Nordo, G.: On 1-gaps in 3D digital objects. Filomat 22(3), 85–91 (2011)

    Article  MathSciNet  Google Scholar 

  39. Maimone, A., Nordo, G.: A formula for the number of \((n-2)\)-gaps in digital \(n\)-objects. Filomat 27(4), 547–557 (2013)

    Article  MathSciNet  Google Scholar 

  40. Maimone, A., Nordo, G.: A note on dimension and gaps in digital geometry. Filomat 31(5), 1215–1227 (2017)

    Article  MathSciNet  Google Scholar 

  41. Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, London (1982)

    MATH  Google Scholar 

  42. Sossa, H.: On the number of holes of a 2-D binary object. In: 14th IAPR International Conference on Machine Vision Applications, MVA, pp. 299–302 (2015)

    Google Scholar 

  43. Sossa-Azuela, J.H., Cuevas-Jiménez, E.B., Zaldivar-Navarro, D.: Alternative way to compute the Euler number of a binary image. J. Appl. Res. Technol. 9, 335–341 (2011)

    Google Scholar 

  44. Sossa-Azuela, J., Santiago-Montero, R., Pérez-Cisneros, M., Rubio-Espino, E.: Computing the Euler number of a binary image based on a vertex codification. J. Appl. Res. Technol. 11(3), 360–370 (2013)

    Article  Google Scholar 

  45. Sossa-Azuela, J., Santiago-Montero, R., Pérez-Cisneros, M., Rubio-Espino, E.: Alternative formulations to compute the binary shape Euler number. IET Comput. Vis. 8(3), 171–181 (2014)

    Article  Google Scholar 

  46. Yagel, R., Cohen, D., Kaufman, A.E.: Discrete ray tracing. IEEE Comput. Graph. Appl. 12(5), 19–28 (1992)

    Article  Google Scholar 

  47. Yao, B., et al.: An efficient strategy for bit-quad-based Euler number computing algorithm. IEICE Trans. Inf. Syst. E97.D(5), 1374–1378 (2014)

    Article  Google Scholar 

  48. Zenzo, S.D., Cinque, L., Levialdi, S.: Run-based algorithms for binary image analysis and processing. IEEE Trans. Pattern Anal. Mach. Intell. 18(1), 83–89 (1996)

    Article  Google Scholar 

  49. Zhang, Z., Moss, R.H., Stoecker, W.V.: A novel morphological operator to calculate Euler number. In: Medical Imaging and Augmented Reality: First International Workshop, MIAR, pp. 226–228 (2001)

    Google Scholar 

Download references

Acknowledgement

This work has been partially supported by the Ministry of Education and Science of the Republic of Serbia within the Project No. 34014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidija Čomić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Čomić, L. (2018). On Gaps in Digital Objects. In: Barneva, R., Brimkov, V., Tavares, J. (eds) Combinatorial Image Analysis. IWCIA 2018. Lecture Notes in Computer Science(), vol 11255. Springer, Cham. https://doi.org/10.1007/978-3-030-05288-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05288-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05287-4

  • Online ISBN: 978-3-030-05288-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics