Skip to main content

Quadrangular Mesh Generation Using Centroidal Voronoi Tessellation on Voxelized Surface

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11255))

Included in the following conference series:

Abstract

We propose an efficient algorithm for isotropic tessellation on a voxelized surface. Owing to execution in the voxel space, the algorithm is easily compliant to parallel computation. We show how an input triangle mesh can readily be restructured to an isotropic quadrangular mesh after a post-processing on the tessellated surface. We also show how different regions of the quad mesh can be decimated to finer quads in an adaptive manner based on digital planarity. Necessary theoretical analysis and experimental results have been provided to adjudge its merit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhunre, P.K., Bhowmick, P., Mukherjee, J.: On efficient computation of inter-simplex Chebyshev distance for voxelization of 2-manifold surface. Inf. Sci. (2018). https://doi.org/10.1016/j.ins.2018.03.006

  2. Alliez, P., De Verdière, E.C., Devillers, O., Isenburg, M.: Isotropic surface remeshing. In: Shape Modeling International, pp. 49–58 (2003). https://doi.org/10.1109/SMI.2003.1199601

  3. Baudouin, T.C., Remacle, J.-F., Marchandise, E., Lambrechts, J., Henrotte, F.: Lloyd’s energy minimization in the \(L_p\) norm for quadrilateral surface mesh generation. Eng. Comput. 30, 97–110 (2014). https://doi.org/10.1007/s00366-012-0290-x

    Article  Google Scholar 

  4. Bommes, D., et al.: Quad-mesh generation and processing: a survey. Comput. Graph. Forum 32, 51–76 (2013). https://doi.org/10.1111/cgf.12014

    Article  Google Scholar 

  5. Boubekeur, T., Reuter, P., Schlick, C.:Visualization of point-based surfaces with locally reconstructed subdivision surfaces. In: Shape Modeling and Applications, pp. 23–32 (2005). https://doi.org/10.1109/SMI.2005.49

  6. Cashman, T.J.: Beyond Catmull-Clark: a survey of advances in subdivision surface methods. Comput. Graph. Forum 31, 42–61 (2012). https://doi.org/10.1111/j.1467-8659.2011.02083.x

    Article  Google Scholar 

  7. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)

    Article  Google Scholar 

  8. Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models Image Process. 57, 453–461 (1995). https://doi.org/10.1006/gmip.1995.1039

    Article  Google Scholar 

  9. Du, Q., Gunzburger, M.D., Ju, L.: Constrained centroidal Voronoi tessellations for surfaces. SIAM J. Sci. Comput. 24, 1488–1506 (2003). https://doi.org/10.1137/S1064827501391576

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, Q., Wang, D.: Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput. 26(3), 737–761 (2005). https://doi.org/10.1137/S1064827503428527

    Article  MathSciNet  MATH  Google Scholar 

  11. Dyn, N., Levin, D., Liu, D.: Interpolatory convexity-preserving subdivision schemes for curves and surfaces. Comput. Aided Des. 24, 211–216 (1992). https://doi.org/10.1016/0010-4485(92)90057-H

    Article  MATH  Google Scholar 

  12. Fischer, I., Gotsman, C.: Fast approximation of high-order Voronoi diagrams and distance transforms on the GPU. J. Graph. Tools 11, 39–60 (2006). https://doi.org/10.1080/2151237X.2006.10129229

    Article  Google Scholar 

  13. Hausner, A.: Simulating decorative mosaics. In: Computer Graphics & Interactive Techniques, pp. 573–580 (2001). https://doi.org/10.1145/383259.383327

  14. Hu, K., Zhang, Y.J.: Centroidal Voronoi tessellation based polycube construction for adaptive all-hexahedral mesh generation. Comput. Methods Appl. Mech. Eng. 305, 405–421 (2016). https://doi.org/10.1016/j.cma.2016.03.021

    Article  MathSciNet  Google Scholar 

  15. Ju, T., Carson, J., Liu, L., Warren, J., Bello, M., Kakadiaris, I.: Subdivision meshes for organizing spatial biomedical data. Methods 50, 70–76 (2010). https://doi.org/10.1016/j.ymeth.2009.07.012

    Article  Google Scholar 

  16. Karbacher, S., Seeger, S., Häusler, G.: A non-linear subdivision scheme for triangle meshes. In: Vision, Modeling and Visualization, pp. 163–170 (2000)

    Google Scholar 

  17. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis (2004)

    Chapter  Google Scholar 

  18. Klette, R., Stojmenović, I., Žunić, J.: A parametrization of digital planes by least-squares fits and generalizations. Graph. Models Image Process. 295–300 (1996). https://doi.org/10.1006/gmip.1996.0024

    Article  Google Scholar 

  19. Leung, Y.-S., Wang, X., He, Y., Liu, Y.-J., Wang, C.C.: A unified framework for isotropic meshing based on narrow-band Euclidean distance transformation. Comput. Vis. Media 1, 239–251 (2015). https://doi.org/10.1007/s41095-015-0022-4

    Article  Google Scholar 

  20. Lévy, B., Bonneel, N.: Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In: Jiao, X., Weill, J.C. (eds.) 21st International Meshing Roundtable, pp. 349–366. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33573-0_21

    Chapter  Google Scholar 

  21. Lévy, B., Liu, Y.: \(L_p\) centroidal Voronoi tessellation and its applications. ACM ToG, 29, Article no. 119 (2010). https://doi.org/10.1145/1833349.1778856

  22. Liu, Y., et al.: On centroidal Voronoi tessellation - energy smoothness and fast computation. ACM ToG 28, Article no. 101 (2009). https://doi.org/10.1145/1559755.1559758

    Article  Google Scholar 

  23. Liu, Y.-J., Xu, C.-X., Yi, R., Fan, D., He, Y.: Manifold differential evolution (MDE): a global optimization method for geodesic centroidal Voronoi tessellations on meshes. ACM ToG 35, Article no. 243 (2016). https://doi.org/10.1145/2980179.2982424

    Google Scholar 

  24. Peters, J., Reif, U.: The simplest subdivision scheme for smoothing polyhedra. ACM ToG 16, 420–431 (1997). https://doi.org/10.1145/263834.263851

    Article  Google Scholar 

  25. Rong, G., Liu, Y., Wang, W., Yin, X., Gu, D., Guo, X.: GPU-assisted computation of centroidal Voronoi tessellation. IEEE TVCG 17, 345–356 (2011). https://doi.org/10.1109/TVCG.2010.53

    Article  Google Scholar 

  26. Rong, G., Tan, T.-S.: Jump flooding in GPU with applications to Voronoi diagram and distance transform. In: I3D 2006, pp. 109–116 (2006). https://doi.org/10.1145/1111411.1111431

  27. Surazhsky, V., Alliez, P., Gotsman, C.: Isotropic remeshing of surfaces: a local parameterization approach. Ph.D thesis, INRIA (2003)

    Google Scholar 

  28. Valette, S., Chassery, J.-M.: Approximated centroidal Voronoi diagrams for uniform polygonal mesh coarsening. Comput. Graph. Forum 23, 381–389 (2004). https://doi.org/10.1111/j.1467-8659.2004.00769.x

    Article  Google Scholar 

  29. Velho, L., Zorin, D.: 4–8 subdivision. Comput. Aided Geom. Des. 18, 397–427 (2001). https://doi.org/10.1016/S0167-8396(01)00039-5

    Article  MATH  Google Scholar 

  30. Wang, X., et al.: Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes. Comput. Aided Des. 58, 51–61 (2015). https://doi.org/10.1016/j.cad.2014.08.023

    Article  Google Scholar 

  31. Yan, D.-M., Lévy, B., Liu, Y., Sun, F., Wang, W.: Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. Comput. Graph. Forum 28, 1445–1454 (2009). https://doi.org/10.1111/j.1467-8659.2009.01521.x

    Article  Google Scholar 

  32. Yang, X.: Surface interpolation of meshes by geometric subdivision. Comput. Aided Des. 37, 497–508 (2005). https://doi.org/10.1016/j.cad.2004.10.008

    Article  MATH  Google Scholar 

  33. Yukihiro, K.: GPU-based cluster-labeling algorithm without the use of conventional iteration: application to the Swendsen-Wang multi-cluster spin flip algorithm. Comput. Phys. Commun. 194(Sup. C), 54–58 (2015). https://doi.org/10.1016/j.cpc.2015.04.015

    Article  Google Scholar 

  34. Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology. In: Computer Graphics & Interactive Techniques, pp. 189–192 (1996). https://doi.org/10.1145/237170.237254

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Bhowmick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soni, A., Bhowmick, P. (2018). Quadrangular Mesh Generation Using Centroidal Voronoi Tessellation on Voxelized Surface. In: Barneva, R., Brimkov, V., Tavares, J. (eds) Combinatorial Image Analysis. IWCIA 2018. Lecture Notes in Computer Science(), vol 11255. Springer, Cham. https://doi.org/10.1007/978-3-030-05288-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05288-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05287-4

  • Online ISBN: 978-3-030-05288-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics