Skip to main content

Recent R&D Technologies and Future Prospective of Flying Robot in Tough Robotics Challenge

  • Chapter
  • First Online:
Disaster Robotics

Abstract

This chapter contains from Sects. 3.1 to 3.5. Section 3.1 describes firstly the definition of drones and recent trends. The important functions of the search and rescue flying robot are also generally described. And, Sect. 3.1 consists of an overview of R&D technologies of flying robot in Tough Robotics Challenge and a technical and general discussion about a future prospective of flying robot including the real disaster survey and technical issues. Namely, drones or unmanned aerial vehicles (UAVs) should be going to real and bio-inspired flying robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.hark.jp/.

  2. 2.

    https://developer.arm.com/technologies/neon.

References

  1. https://www.statista.com/statistics/510894/natural-disasters-globally-and-economic-losses/

  2. Murphy, R.R.: Disaster Robotics. MIT Press, Cambridge (2014)

    Book  Google Scholar 

  3. Valavanis, K.P., Vachtsevanos, G.J. (eds.): Handbook of Unmanned Aerial Vehicles, pp. 529–710, 2997–3000. Springer, Berlin (2015)

    Google Scholar 

  4. Office of the Secretary of Defense, Unmanned Aircraft Systems Roadmap, 2005–2030

    Google Scholar 

  5. Nonami, K., Kartidjo, M., Yoon, K.J., Budiyono, A. (eds.): Autonomous Control Systems and Vehicles: Intelligent Unmanned Systems, pp. 55–71. Springer, Berlin (2013)

    Google Scholar 

  6. Quan, Q.: Introduction to Multicopter Design and Control. Springer, Berlin (2017)

    Book  Google Scholar 

  7. Nonami, K.: All of the Drone Industry Application, pp. 179–183. Ohmsha (2018)

    Google Scholar 

  8. http://www.kantei.go.jp/jp/singi/kogatamujinki/pdf/shiryou6.pdf

  9. Nonami, K., Kendoul, F., Wan, W., Suzuki, S., Nakazawa, D.: Autonomous Flying Robots. Springer, Berlin (2010)

    Book  Google Scholar 

  10. Nonami, K., Inoue, S.: Research on sub-committee of aerial robot of ImPACT/TRC. J. Robot. Soc. Jpn. 35(10), 700–706 (2017)

    Article  Google Scholar 

  11. de Bree, H.-E.: Acoustic vector sensors increasing UAV’s situational awareness, SAE Technical Paper, pp. 2009–01–3249 (2009). https://doi.org/10.4271/2009-01-3249

  12. Kaushik, B., Nance, D., Ahuj, K.K.: A review of the role of acoustic sensors in the modern battlefield. In: Proceedings of 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference), pp. 1–13 (2005)

    Google Scholar 

  13. Basiri, M., Schill, F., Lima, P.U., Floreano, D.: Robust acoustic source localization of emergency signals from micro air vehicles. In: Proceedings of the IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), pp. 4737–4742 (2012)

    Google Scholar 

  14. Okutani, K., Yoshida, T., Nakamura, K., Nakadai, K.: Outdoor auditory scene analysis using a moving microphone array embedded in a quadrocopter. In: Proceedings of the IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), pp. 3288–3293 (2012)

    Google Scholar 

  15. Schmidt, R.O.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986). https://doi.org/10.1109/TAP.1986.1143830

    Article  Google Scholar 

  16. Ohata, T., Nakamura, K., Mizumoto, T., Tezuka, T., Nakadai, K.: Improvement in outdoor sound source detection using a quadrotor-embedded microphone array. In: Proceedings of the IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), pp. 1902–1907 (2014)

    Google Scholar 

  17. Furukawa, K., Okutani, K., Nagira, K., Otsuka, T., Itoyama, K., Nakadai, K., Okuno, H.G.: Noise correlation matrix estimation for improving sound source localization by multirotor UAV. In: Proceedings of the IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), pp. 3943–3948 (2013)

    Google Scholar 

  18. Hoshiba, K., Washizaki, K., Wakabayashi, M., Ishiki, T., Kumon, M., Bando, Y., Gabriel, D., Nakadai, K., Okuno, H.G.: Design of UAV-embedded microphone array system for sound source localization in outdoor environments. Sensors 17(11), 1–16 (2017). https://doi.org/10.3390/s17112535

    Article  Google Scholar 

  19. Nakadai, K., Takahashi, T., Okuno, H.G., Nakajima, H., Hasegawa, Y., Tsujino, H.: Design and Implementation of robot audition system ‘HARK’–open source software for listening to three simultaneous speakers. Adv. Robot. 24(5–6), 739–761 (2010). https://doi.org/10.1163/016918610X493561

    Article  Google Scholar 

  20. Wakabayashi, M., Kumon, M.: Position estimation of multiple sound sources on the ground by multirotor helicopter with microphone array. JSAI Technical report SIG-Challenge-049-3, pp. 15–22 (2017). (in Japanese)

    Google Scholar 

  21. Konstantinova, P., Udvarev, A., Semerdjiev, T.: A study of a target tracking algorithm using global nearest neighbor approach. In: Proceedings of International Conference on Computer Systems and Technologies (CompSysTech), pp. 290–295 (2003)

    Google Scholar 

  22. Washizaki, K., Wakabayashi, M., Kumon, M.: Position estimation of sound source on ground by multirotor helicopter with microphone array. In: Proceedings of the IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), pp. 1980–1985 (2016)

    Google Scholar 

  23. Hoshiba, K., Sugiyama, O., Nagamine, A., Kojima, R., Kumon, M., Nakadai, K.: Design and assessment of sound source localization system with a UAV-embedded microphone array. J. Robot. Mechatron. 29(1), 154–167 (2017). https://doi.org/10.20965/jrm.2017.p0154

    Article  Google Scholar 

  24. Morito, T., Sugiyama, O., Kojima, R., Nakadai, K.: Partially shared deep neural network in sound source separation and identification using a UAV-embedded microphone array. In: Proceedings of the IEEE/RSJ International Conference on Robots and Intelligent Systems (IROS), pp. 1299–1304 (2016)

    Google Scholar 

  25. Morito, T., Sugiyama, O., Kojima, R., Nakadai, K.: Reduction of computational cost using two-stage deep neural network for training for denoising and sound source identification. In: Proceedings of the IEA/AIE 2016 Trends in Applied Knowledge-Based Systems and Data Science. Series Lecture Notes in Computer Science, vol. 9799, pp. 562–573 (2016)

    Google Scholar 

  26. Sugiyama, O., Uemura, S., Nagamine, A., Kojima, R., Nakamura, K., Nakadai, K.: Outdoor acoustic event identification with DNN using a quadrotor-embedded microphone array. J. Robot. Mechatron. 29(1), 188–197 (2017). https://doi.org/10.20965/jrm.2017.p0188

    Article  Google Scholar 

  27. Sunada, S., Tanabe, Y., Yonezawa, K., Tokutake, H.: Improvement of flight performance of minisurveyor by using pitch control and decreasing the number of rotors. In: 2016 Asia-Pacific International Symposium on Aerospace Technology, Toyama, Japan (2017)

    Google Scholar 

  28. Yonezawa, K., Yoshida, N., Sugiyama, K., Tokutake, H., Tanabe, Y., Sunada, S.: Development of a multicopter with ducted and variable pitch rotors. In: Proceedings of the 5th Asian/Australian Rotorcraft Forum, American Helicopter Society International, Fairfax, Virginia. U.S. (2016)

    Google Scholar 

  29. Yonezawa, K., Matsumoto, H., Sugiyama, K., Tokutake, H., Tanabe, Y., Sunada, S.: Development of a ducted rotor for multicopters. In: 6th Asian/Australian Rotorcraft Forum(ARF) and Heli Japan 2017, Kanazawa, Japan (2017)

    Google Scholar 

  30. Hrishikeshavan, V., Sirohi, J., Tishchenko, M., Chopra, I.: Design, development, and testing of a shrouded single-rotor micro air vehicle with antitorque vanes. J. Am. Helicopter Soc. 56, 012008-1–012008-11 (2011)

    Google Scholar 

  31. Hrishikeshavan, V., Black, J., Chopra, I.: Design and performance of a quad-shrouded rotor micro air vehicle. J. Aircr. 51, 779–791 (2014)

    Article  Google Scholar 

  32. Tanabe, Y., Saito, S., Sugawara, H.: Construction and validation of an analysis tool chain for rotorcraft active noise reduction, In: Proceedings of 38th European Rotorcraft Forlum (ERF), Netherlands Association of Aeronautical Engineers, Amsterdam, NL (2012)

    Google Scholar 

  33. Tanabe, Y., Sugiura, M., Aoyama, T., Sugawara, H., Sunada, S., Yonezawa, K., Tokutake, H.: Multiple rotors hovering near an upper or a side wall. J. Robot. Mechatron. 30, 344–353 (2018)

    Article  Google Scholar 

  34. Torita, R., Kishi, T., Tokutake, H., Sunada, S., Tanabe, Y., Yonezawa, K.: Modeling of aerodynamic characteristics of drone and improvement of gust response. In: 6th Asian/Australian Rotorcraft Forum(ARF) and Heli Japan 2017, Kanazawa, Japan (2017)

    Article  Google Scholar 

  35. Kim, S., Choi, S., Kim, H.J.: Aerial manipulation using a quadrotor with a two DOF robotic arm. In: Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4990–4995 (2013)

    Google Scholar 

  36. Kim, S., Seo, H., Choi, S., Kim, H.J.: Vision-guided aerial manipulation using a multirotor with a robotic arm. IEEE/ASME Trans. Mechatron. 21(4), 1912–1923 (2016)

    Article  Google Scholar 

  37. Lippiello, V., Cacace, J., Santamaria-Navarro, A., Andrade-Cetto, J., Trujillo, M.À., Esteves, Y.R., Viguria, A.: Hybrid visual servoing with hierarchical task composition for aerial manipulation. IEEE Robot. Autom. Lett. 1(1), 259–266 (2016)

    Article  Google Scholar 

  38. Ohnishi, Y., Takaki, T., Aoyama, T., Ishii, I.: Development of a 4-Joint 3-DOF robotic arm with anti-reaction force mechanism for a multicopter. In: Proceedings of the 2013 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 985–991 (2017)

    Google Scholar 

  39. Parsons, B.N.V., Stanton, S.: Linear actuator. US Patent 4,794,810 (1989)

    Google Scholar 

  40. Nonami, K.: Drone technology, cutting-edge drone business, and future prospects. J. Robot. Mech. 28, 262–272 (2016)

    Article  Google Scholar 

  41. Rothstein, A.: Drone (Object Lessons). Bloomsbury Publishing, New York (2015)

    Google Scholar 

  42. Christian, A., Cabell, R.: Initial investigation into the psychoacoustic properties of small unmanned aerial system noise. In: 23rd AIAA/CEAS Aeroacoustics Conference, AIAA AVIATION Forum, AIAA 2017-4051 (2017)

    Google Scholar 

  43. Wagner, H., Weger, M., Klaas, M., Schro, W.: Features of owl wings that promote silent flight. Interface Focus 7, 20160078 (2017)

    Article  Google Scholar 

  44. Ikeda, T., Ueda, T., Nakata, T., Noda, R., Tanaka, H., Fujii, T., Liu, H.: Morphology effects of leading-edge serrations on aerodynamic force production: an integrated study with PIV and force measurements. J. Bionic Eng. 14, 661–672 (2018)

    Article  Google Scholar 

  45. Rao, C., Ikeda, T., Nakata, T., Liu, H.: Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression. Bioinspiration Biomim. 12, 046008 (2017)

    Article  Google Scholar 

  46. Usherwood, J.R., Ellington, C.P.: The aerodynamics of revolving wings I. Model hawkmoth wings. J. Exp. Biol. 205, 1547–1564 (2002)

    Google Scholar 

  47. Ellington, C.P.: The aerodynamics of hovering insect flight. V. A vortex theory. Philos. Trans. R. Soc. Lond. B 305, 115–144 (1984)

    Article  Google Scholar 

  48. Henderson, L., Glaser, T., Kuester, L.: Towards bio-inspired structural design of a 3D printable, ballistically deployable, multi-rotor UAV. In: 2017 IEEE Aerospace Conference (2017)

    Google Scholar 

  49. Keshavan, J., Gremillion, G., Escobar-Alravez, H., Humbert, J.S.: A \(\mu \) analysis-based controller-synthesis framework for robust bioinspired visual navigation in less-structured environments. Bioinspiration Biomim. 9, 025011 (2014)

    Article  Google Scholar 

  50. Mintichev, S., Rivaz, S., Floreano, D.: Insect-inspired mechanical resilience for multicopters. IEEE Robot. Autom. Lett. 2, 1248–1255 (2017)

    Article  Google Scholar 

  51. Sabo, C., Cope, A., Gurny, K., Vasilaki, E., Marshall, J.A.: Bio-inspired visual navigation for a quadcopter using optic flow. In: AIAA Infotech @ Aerospace, AIAA SciTech Forum, AIAA 2016-0404 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Impulsing Paradigm Change through Disruptive Technologies (ImPACT) Tough Robotics Challenge program of Japan Science and Technology (JST) Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenzo Nonami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nonami, K. et al. (2019). Recent R&D Technologies and Future Prospective of Flying Robot in Tough Robotics Challenge. In: Tadokoro, S. (eds) Disaster Robotics. Springer Tracts in Advanced Robotics, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-05321-5_3

Download citation

Publish with us

Policies and ethics