Abstract
A multiobjective perspective onto common performance measures such as the PAR10 score or the expected runtime of single-objective stochastic solvers is presented by directly investigating the tradeoff between the fraction of failed runs and the average runtime. Multi-objective indicators operating in the bi-objective space allow for an overall performance comparison on a set of instances paving the way for instance-based automated algorithm selection techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bischl, B. et al.: ASlib: a benchmark library for algorithm selection. Artif. Intell. J. 237, 41–58 (2016). https://doi.org/10.1016/j.artint.2016.04.003
Blot, A., Hoos, H., Jourdan, L., Marmion, M., Trautmann, H.: In: Joaquin, V. et al. (ed.) MO-ParamILS: A multi-objective automatic algorithm configuration framework, pp. 32–47. Springer International Publishing, Ischia (2016)
Coello Coello, C., Lamont, G.B., van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-objective Problems. Springer, Berlin (2007)
Hansen, N., Auger, A., Finck, S., Ros, R.: Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup. Technical Report RR-6828, INRIA (2009). https://hal.inria.fr/inria-00362649v3/document
Kerschke, P., Kotthoff, L., Bossek, J., Hoos, H.H., Trautmann, H.: Leveraging TSP solver complementarity through machine learning. Evol. Comput. 0(0), 1–24 (2017). https://doi.org/10.1162/evco_a_00215, pMID: 28836836
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Acknowledgements
The authors acknowledge support from the European Research Center for Information Systems (ERCIS) and the DAAD PPP project No. 57314626.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bossek, J., Trautmann, H. (2019). Multi-objective Performance Measurement: Alternatives to PAR10 and Expected Running Time. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 12 2018. Lecture Notes in Computer Science(), vol 11353. Springer, Cham. https://doi.org/10.1007/978-3-030-05348-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-05348-2_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05347-5
Online ISBN: 978-3-030-05348-2
eBook Packages: Computer ScienceComputer Science (R0)