Algorithm Configuration: Learning policies for
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Abstract. One way to speed up the algorithm configuration task is to
use short runs instead of long runs as much as possible, but without dis-
carding the configurations that eventually do well on the long runs. We
consider the problem of selecting the top performing configurations of the
Conditional Markov Chain Search (CMCS), a general algorithm schema
that includes, for examples, VNS. We investigate how the structure of
performance on short tests links with those on long tests, showing that
significant differences arise between test domains. We propose a “per-
formance envelope” method to exploit the links; that learns when runs
should be terminated, but that automatically adapts to the domain.

1 Introduction

Careful configuration of algorithms can lead to a significant improvement in per-
formance [1, and many others]. This is usually done by searching in the space
of configurations and evaluating each configuration on a set of target instances.
However, such instances are often large and will require long runs, so direct
and complete usage of such intended instances problems will be overly time-
consuming. A natural desire is that, in a justified fashion, we should be able to
reduce the run times by exploiting the results of “short runs” in order to con-
figure for “long runs”: There is a need to learn how to extrapolate from “short”
to “long”. This suggests that machine learning methods should be applied to
collections of such “short-run data”, to analyse patterns, and so produce predic-
tions for the performance in the long runs. This view suggests that for algorithm
configuration at least 3 different ‘generic’ spaces are relevant:

— C “Configuration space” — the direct parameters of the algorithms.
— S “Short-run space” — the space of (detailed) results using short runs.
— L “Long-run space” — results from long runs.

A common procedure would be to do a (local) search in C-space, using fitnesses
obtained from L-space. In this context, the usage of machine learning might be
to develop a mapping from the C-space to the L-space, e.g. see SMAC [1]. In this
paper, we instead study the potential for learning the mappings from S-space
to L-space — aiming to exploit how short runs are able to predict longer term
behaviours. The goal is to use such information to optimise the policies for when
a trial of a particular configuration should be terminated — because there is high
confidence it will not lead to a good final solution.



2 Experimental Setup

We used CMCS, a recent framework that defines the behaviour of a multi-
component optimisation algorithm with a set of numeric parameters [2, 3]. We
used three problem domains: the Simple Plant Location Problem (SPLP) [2],
the Far From Most String Problem (FFMSP) (the details of our components,
testbed, etc. are not yet published) and the Bipartite Boolean Quadratic Prob-
lem (BBQP) [3]. We generated all ‘meaningful’ 3-component configurations with
deterministic control mechanism, thus ending up with a finite number of con-
figurations. We do not include details of exactly what these mean (see [3,2]),
as for the purposes of this paper, these can simply be regarded as a categorical
set of potential options, and defining the “C-space”. The goal of the work is to
find configurations that are the best performers, with respect to the long-run
L-space, but exploiting their properties with respect to the short-run S-space in
order to reduce the overall time budget.

The full time budget for each ‘long’ run was selected as 1024ms. Ten random
instances were generated for each domain, with the size chosen to make them
hard enough for this time budget. We then generated performance data* for each
domain, by solving each of the ten instances by each of the configurations, and
recording the solution quality at 1ms, 2ms, 4ms, ..., 1024ms. Objective values
were scaled to [0, 1] for each instance, and then averaged over the data instances.
Hence, quality 0 (resp. 1) means that, for each instance, the configuration yielded
solution as good (resp. bad) as any other configuration within the full 1024ms
time budget.

In results for SPLP in Figure 1(a), the solid line shows the Performance
Profile (PP) of the top configuration, i.e. how the solution quality of the best-
in-L-space configuration improves over time. The other two lines, which we call
cutoff lines, are from aggregating PPs of a set of configurations. To obtain an 2%
cutoff line, we select the top-z% of the configurations in the S-space and then pro-
duce the cutoff line as a combined worst-case PP for all those configurations. (All
three lines are monotonic, as CMCS records the best-so-far solutions.) As hoped,
there is a strong correlation between the short- and long-run performance of the
top configurations; specifically, the cutoff lines drop relatively quickly, suggesting
that there is a potential for a significant speed up by terminating configurations
that perform poorly in the ‘long’ runs. To evaluate this, we plotted the ranks
corresponding to the lines in Figure 1(b). The lowness of the solid line indicates
the top configuration was among the top performers throughout the run. The
drop in the cutoff lines indicates that the runs longer than ~ 20ms are likely to
be useful in early prediction of the ‘long’ performance. E.g., at 32ms, the 1% cut-
off line potentially allows us to rule out 89% of all the configurations. Short-run
performances do link to long-runs; hence, we can use this to quickly terminate
configurations that are not likely to have good L-space performance. However,
Figures 1(c,d), showing the results for the FFMSP domain, demonstrate that in
other domains one may need longer short-runs to predict ‘long’ performance.
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(a) SPLP solution quality (b) SPLP configuration rank
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Fig. 1. Solution quality and configuration rank as they change throughout the run.

Finding the exact cutoff lines in advance is impractical, as it requires long

runs for all the configurations. The heuristic below obtains and exploits a rea-
sonably reliable 1% cutoff line much quicker. Specific parameter values used are
given, but are changeable.

1.

Randomly select 1% out of all the configurations and place them into a pool
P and run full-time tests for each ¢ € P. Generate the cutoff line as the
combined worst case PP for all ¢ € P.

. First pass: For each previously untested configuration ¢, start a full-time test

and gradually build its PP. If at any of 1ms, 2ms, 4ms, ..., 512ms its PP
rises above the cutoff line by more than 20%, terminate the run. However,
if ¢ survives early termination, add ¢ to P and remove the worst-performing
(in the L-space) configuration from P; update the cutoff line.

. Second pass: repeat Step 2, but scanning only through the configurations

that were terminated early. This pass helps recovery from the potential bias
at the beginning of the first pass if the initial cutoffs were too tight.

. Return P as an approximation of the top 1% of all the configurations.

Table 1 gives experimental results. (We did not report the results for BBQP

in Figure 1 due to lack of space). The ‘Speed up’ column tells how much quicker
the heuristic is compared to evaluating all the configurations in S-space. The



Domain #conf. Speed up Overlap (top conf.) Overlap (1%)

SPLP 26,608 9.4 100% 99.3%
FFBSP 8,064 2.1 100% 99.9%
BBQP 9,860 9.2 100% 98.7%

Table 1. Accuracy of the cutoff approximation algorithm.

‘Overlap (top conf.)’ tells how often the heuristic finds the best performing con-
figuration (in 100 experiments), and the ‘Overlap (1%)’ column tells the average
overlap between the true top 1% configurations and the ones found by our heuris-
tic. Note the speed up factor significantly depends on the domain; the SPLP and
BBQP domains gave more than 9x speed up, though in FFMSP, the gain is much
more modest. In all the domains, our heuristic procedure successfully found the
best performing configuration every time, and was 99% accurate in finding the
top-1% of configurations.

3 Conclusions and Future Work

The PPs arising from CMCS were shown to have sufficient structure in their
behaviours such that a “performance envelope/cut-off” could be constructed to
effectively determine when terminating a test run was safe, in that most of the
good configurations would be found. Behaviours of the PPs differed between
domains, suggesting that dynamic adaptive methods are needed. We gave a
heuristic method for this, that automatically strengthens the cut-offs as more
PPs are collected, and so reduces overall runtime.

The work here only used a PP of a simple linear aggregate over a set of dif-
ferent test instances. However, future extensions should consider “Performance
Trajectories”; using the entire, time-dependent vector of the performances over
the set of test instances. Initial explorations have taken such performance vec-
tors at a given “short time point” and then considered them as feature vectors
with labels given by the ultimate aggregate quality with a long runtime. For
SPLP, standard classification methods did identify the regions in the S-vector
space that lead to longer term good performance. This suggests that information
in performance trajectories is also available that can be extracted by machine
learning in order to classify (or cluster) behaviours and so potentially be used
to optimise policies for when tests on configurations can be terminated.
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