Abstract
The maximum m-Peripatetic Salesman Problem (m-PSP) consists of determining m edge-disjoint Hamiltonian cycles of maximum total weight in a given complete weighted n-vertex graph. We consider a geometric variant of the problem and describe a polynomial time approximation algorithm for the m-PSP in a normed space of fixed dimension. We prove that the algorithm is asymptotically optimal for \(m=o(n)\).
Sections 1 and 2 are supported by the RFBR (project 16-07-00168), by the Russian Ministry of Science and Education under the 5-100 Excellence Programme and by the program of fundamental scientific researches of the SB RAS I.5.1. Sections 3 and 4 are supported by Russian Science Foundation (project 16-11-10041)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baburin, A.E., Gimadi, EKh: On the asymptotic optimality of an algorithm for solving the maximum m-PSP in a multidimensional Euclidean space. Proc. Steklov Inst. Math. 272(1), 1–13 (2011)
Barvinok, A.I., Fekete, S.P., Johnson, D.S., Tamir, A., Woeginger, G., Woodroofe, R.: The geometric maximum traveling salesman problem. J. ACM 50(5), 641–664 (2003)
Barvinok, A.I., Gimadi, E.Kh., Serdyukov, A.I.: In: Punnen, A., Gutin, G. (eds.) The Maximum TSP. In: The Traveling Salesman Problem and Its Variations, pp. 585–608. Kluwer Academic Publishers, Dordrecht (2002)
De Kort, J.B.J.M.: Upper bounds and lower bounds for the symmetric K peripatetic salesman problem. Optimization 23(4), 357–367 (1992)
Duhenne, E., Laporte, G., Semet, F.: The undirected m-capacitated peripatetic salesman problem. Eur. J. Oper. Res. 223(3), 637–643 (2012)
Gimadi, E.Kh.: A new version of the asymptotically optimal algorithm for solving the Euclidean maximum traveling salesman problem (in Russian). Proc. 12th Baykal International Conference 2001, Irkutsk, vol. 1, pp. 117–123 (2001)
Gimadi, EKh, Istomin, A.M., Rykov, I.A.: On m-capa itated peripatetic salesman problem with capaity restritions. J. Appl. Ind. Math. 8(1), 1–15 (2014)
Krarup, J.: The peripatetic salesman and some related unsolved problems. Comb. Program.: Methods Appl. NATO Adv. Study Inst. Ser. 19, 173–178 (1975)
Lawler, E.L., Lenstra, J.K.: Rinnooy Kan, A.H.G., Shmoys, D.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1985)
Serdyukov, A. I: An asymptotically optimal algorithm for the maximum traveling salesman problem in Euclidean space (in Russian). Upravlyaemye Sistemy 27, Novosibirsk, pp. 79–87 (1987)
Shenmaier, V.V.: Asymptotically optimal algorithms for geometric Max TSP and Max m-PSP. Discret. Appl. Math. 163(2), 214–219 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Gimadi, E.K., Tsidulko, O.Y. (2019). Asymptotically Optimal Algorithm for the Maximum m-Peripatetic Salesman Problem in a Normed Space. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 12 2018. Lecture Notes in Computer Science(), vol 11353. Springer, Cham. https://doi.org/10.1007/978-3-030-05348-2_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-05348-2_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05347-5
Online ISBN: 978-3-030-05348-2
eBook Packages: Computer ScienceComputer Science (R0)