Skip to main content

TimeRank: A Random Walk Approach for Community Discovery in Dynamic Networks

  • Conference paper
  • First Online:
Complex Networks and Their Applications VII (COMPLEX NETWORKS 2018)

Abstract

In this work we consider the problem of discovering communities in time evolving social networks. We propose TimeRank, an algorithm for dynamic networks, which uses random walks on a tensor representation to detect time-evolving communities. The proposed algorithm is based on an earlier work on community detection in multi-relational networks. Detection of dynamic communities can be be done in two steps (segmentation of the network into time frames, detection of communities per time frame and tracking of communities across time frames). Alternatively it can be done in one step. TimeRank is a one step approach. We compared TimeRank with Non-Negative Tensor Factorisation and Group Evolution Discovery method on synthetic and real world data sets from Reddit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://files.pushshift.io/reddit/comments.

  2. 2.

    https://github.com/isaranto/omega-index.

  3. 3.

    https://pypi.python.org/pypi/omega_index/.

  4. 4.

    https://github.com/isaranto/community-tracking.

  5. 5.

    https://github.com/NightmareNyx/CommunityTracking.

References

  1. Amigó, E., Gonzalo, J., Artiles, J., Verdejo, F.: A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf. Retr. 12(4), 461–486 (2009)

    Google Scholar 

  2. Appel, A.P., Cunha, R.L., Aggarwal, C.C., Terakado, M.M.: Temporally evolving community detection and prediction in content-centric networks. arXiv:1807.06560 (2018)

  3. Araujo, M., Papadimitriou, S., Günnemann, S., Faloutsos, C., Basu, P.,Swami, A., Papalexakis, E.E., Koutra, D.: Com2: fast automatic discovery oftemporal (‘comet’) communities. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 271–283. Springer (2014)

    Google Scholar 

  4. Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans. Knowl. Discov. Data (TKDD) 3(4), 16 (2009)

    Google Scholar 

  5. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. (10), P10,008 (2008)

    Google Scholar 

  6. Bródka, P., Saganowski, S., Kazienko, P.: Ged: the method for group evolution discovery in social networks. Soc. Netw. Anal. Mining 3(1), 1–14 (2013)

    Google Scholar 

  7. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Google Scholar 

  8. Gauvin, L., Panisson, A., Cattuto, C.: Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach. PloS One 9(1), e86,028 (2014)

    Google Scholar 

  9. Gliwa, B., Saganowski, S., Zygmunt, A., Bródka, P., Kazienko, P., Kozak, J.: Identification of group changes in blogosphere. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1201–1206. IEEE (2012)

    Google Scholar 

  10. Goldberg, M.K., Magdon-Ismail, M., Nambirajan, S., Thompson, J.: Tracking and predicting evolution of social communities. In: SocialCom/PASSAT, pp. 780–783. Citeseer (2011)

    Google Scholar 

  11. Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: Advances in Social Networks Analysis and Mining, pp. 176–183. IEEE (2010)

    Google Scholar 

  12. Harshman, R.A.: Parafac: an “explanatory" factor analysis procedure. J. Acoust. Soc. Amer. 50(1A), 117–117 (1971)

    Google Scholar 

  13. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM (JACM) 46(5), 604–632 (1999)

    Google Scholar 

  14. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033,015 (2009)

    Google Scholar 

  15. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046,110 (2008)

    Google Scholar 

  16. Murray, G., Carenini, G., Ng, R.: Using the omega index for evaluating abstractive community detection. In: Proceedings of Workshop on Evaluation Metrics and System Comparison for Automatic Summarization, pp. 10–18. Association for Computational Linguistics (2012)

    Google Scholar 

  17. Ng, M.K.P., Li, X., Ye, Y.: Multirank: co-ranking for objects and relations in multi-relational data. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1217–1225. ACM (2011)

    Google Scholar 

  18. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical Report, Stanford InfoLab (1999)

    Google Scholar 

  19. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664 (2007)

    Google Scholar 

  20. Tajeuna, E.G., Bouguessa, M., Wang, S.: Tracking the evolution of community structures in time-evolving social networks. In: IEEE International Conference on Data Science and Advanced Analytics (DSAA). 36678 2015, pp. 1–10. IEEE (2015)

    Google Scholar 

  21. Takaffoli, M., Fagnan, J., Sangi, F., Zaïane, O.R.: Tracking changes in dynamic information networks. In: 2011 International Conference on Computational Aspects of Social Networks (CASoN), pp. 94–101. IEEE (2011)

    Google Scholar 

  22. Wu, Z., Cao, J., Zhu, G., Yin, W., Cuzzocrea, A., Shi, J.: Detecting overlapping communities in poly-relational networks. World Wide Web 18(5), 1373–1390 (2015)

    Google Scholar 

  23. Yang, J., Leskovec, J.: Overlapping community detection at scale: a non negative matrix factorization approach. In: Proceedings of the Sixth ACM International Conference on Websearch and Data Mining, pp. 587–596. ACM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilias Sarantopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarantopoulos, I., Papatheodorou, D., Vogiatzis, D., Tzortzis, G., Paliouras, G. (2019). TimeRank: A Random Walk Approach for Community Discovery in Dynamic Networks. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 812. Springer, Cham. https://doi.org/10.1007/978-3-030-05411-3_28

Download citation

Publish with us

Policies and ethics