Skip to main content

Evaluating the Natural Variability in Generative Models for Complex Networks

  • Conference paper
  • First Online:
Complex Networks and Their Applications VII (COMPLEX NETWORKS 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 812))

Included in the following conference series:

  • 3160 Accesses

Abstract

Complex networks are used to represent real-world systems using sets of nodes and edges that represent elements and their interactions, respectively. A principled approach to understand these network structures (and the processes that give rise to them) is to formulate generative models and infer their parameters from given data. Ideally, a generative model should be able to synthesize networks that belong to the same population as the observed data, but most models are not designed to accomplish this task. Due to the scarcity of data in the form of populations of networks, generative models are typically formulated to learn parameters from a single network observation, hence ignoring the natural variability of network populations. In this paper, we evaluate four generative models with respect to their ability to synthesize networks that belong to the same population as the observed network. Our empirical analysis quantifying the ability of network models to replicate characteristics of a population of networks highlights the need for rethinking the way we evaluate the goodness of fit of new and existing network models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Infomap community detection algorithm [26] was used in our experiments.

References

  1. Alderson, D.L.: Catching the “network science” bug: insight and opportunity for the operations researcher. Oper. Res. 56(5), 1047–1065 (2008). https://doi.org/10.1287/opre.1080.0606

  2. Arora, V., Ventresca, M.: Action-based modeling of complex networks. Sci. Rep. 7(1), 6673 (2017). https://doi.org/10.1038/s41598-017-05444-4

    Google Scholar 

  3. Avena-Koenigsberger, A., Goni, J., Sole, R., Sporns, O.: Network morphospace. J. R. Soc. Interf. 12(103), 20140,881–20140,881 (2014). https://doi.org/10.1098/rsif.2014.0881

  4. Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffusion of microfinance. Science 341(6144), 1236,498 (2013)

    Google Scholar 

  5. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(October), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

    Google Scholar 

  6. Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Annal. Comb. 6(2), 125–145 (2002)

    Google Scholar 

  7. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Nat. Acad. Sci. 99(25), 15879–15882 (2002)

    Google Scholar 

  8. Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech. Theory Exp. (09), P09,008–P09,008 (2005). https://doi.org/10.1088/1742-5468/2005/09/P09008

  9. Faust, K., Wasserman, S.: Blockmodels: interpretation and evaluation. Soc. Netw. 14(1–2), 5–61 (1992). https://doi.org/10.1016/0378-8733(92)90013-W

    Google Scholar 

  10. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016). https://doi.org/10.1016/j.physrep.2016.09.002

    Google Scholar 

  11. Goldenberg, A.: A survey of statistical network models. Foundations and trends\(\textregistered {R}\). Mach. Learn. 2(3), 235–274 (2009). https://doi.org/10.1561/2200000008

  12. Gutfraind, A., Meyers, L.A., Safro, : I.: Multiscale Network Generation. arXiv:1207.4266, 28 (2012)

  13. Hunter, D.R.: Curved exponential family models for social networks. Soc. Netw. 29(2), 216–230 (2007). https://doi.org/10.1016/j.socnet.2006.08.005

    Google Scholar 

  14. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., den Broeck, W.: What’s in a crowd? analysis of face-to-face behavioral networks. J. Theoret. Biol. 271(1), 166–180 (2011)

    Google Scholar 

  15. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution. ACM Trans. Knowl. Discov. Data 1(1), 2-es (2007). https://doi.org/10.1145/1217299.1217301

  16. Mahadevan, P., Krioukov, D., Fall, K., Vahdat, A.: Systematic topology analysis and generation using degree correlations. ACM SIGCOMM Comput. Commun. Rev. 36(4), 135 (2006). https://doi.org/10.1145/1151659.1159930

    Google Scholar 

  17. Moreno, S., Neville, J.: an investigation of the distributional characteristics of generative graph models. In: Proceedings of the 1st Workshop on Information in Networks (2009)

    Google Scholar 

  18. Moreno, S., Neville, J.: Network hypothesis testing using Mixed Kronecker product graph models. In: Xiong, H., Karypis, G., Thuraisingham, B.M., Cook, D.J., Wu, X. (eds.), pp. 1163–1168 (2013)

    Google Scholar 

  19. Moreno, S., Neville, J., Kirshner, S.: Tied Kronecker product graph models to capture variance in network populations. ACM Trans. Knowl. Discov. Data 20(3), 1–40 (2018). https://doi.org/10.1145/3161885

    Google Scholar 

  20. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Google Scholar 

  21. Orsini, C., Dankulov, M.M., Colomer-de Simón, P., Jamakovic, A., Mahadevan, P., Vahdat, A., Bassler, K.E., Toroczkai, Z., Boguñá, M., Caldarelli, G., Fortunato, S., Krioukov, D.: Quantifying randomness in real networks. Nat. Commun. 6(May), 8627 (2015). https://doi.org/10.1038/ncomms9627

    Google Scholar 

  22. Peacock, J.A.: Two-dimensional goodness-of-fit testing in astronomy. Month. Notices R. Astron. Soc. 202(3), 615–627 (1983)

    Google Scholar 

  23. Peixoto, T.P.: Nonparametric Bayesian inference of the microcanonical stochastic block model. Phys. Rev. E 95(1), 1–21 (2017). https://doi.org/10.1103/PhysRevE.95.012317

    Google Scholar 

  24. Pinar, A., Seshadhri, C., Kolda, T.G.: The similarity between stochastic Kronecker and Chung-Lu graph models. In: Zaki, M., Obradovic, Z., Tan, P.N., Banerjee, A., Kamath, C., Parthasarathy, S. (eds.), Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 1071–1082. Society for Industrial and Applied Mathematics, Philadelphia, PA (2012). https://doi.org/10.1137/1.9781611972825.92

  25. Piraveenan, M., Prokopenko, M., Zomaya, : A.Y.: Local assortativeness in scale-free networks. EPL (Europhysics Letters) 84(2), 28,002 (2008). https://doi.org/10.1209/0295-5075/84/28002

  26. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Nat. Acad. Sci. 105(4), 1118–1123 (2008). https://doi.org/10.1073/pnas.0706851105

    Google Scholar 

  27. Schieber, T.A., Carpi, L., Díaz-Guilera, A., Pardalos, P.M., Masoller, C., Ravetti, M.G.: Quantification of network structural dissimilarities. Nat. Commun. 8(May 2016), 13,928 (2017). https://doi.org/10.1038/ncomms13928

  28. Snijders, T.A.B., Pattison, P.E., Robins, G.L.: Specifications for exponential random graph models. In: Sociological Methodology, p. 44., Handcock, M.S.: New (2004). https://doi.org/10.1111/j.1467-9531.2006.00176.x

  29. Strauss, D.: On a general class of models for interaction. SIAM Rev. 28(4), 513–527 (1986)

    Google Scholar 

  30. Views, R.: University of Oregon route views project (2000)

    Google Scholar 

  31. Wasserman, S., Anderson, C.: Stochastic a posteriori blockmodels: construction and assessment. Soc. Netw. 9(1), 1–36 (1987). https://doi.org/10.1016/0378-8733(87)90015-3

    Google Scholar 

  32. Wasserman, S., Pattison, P.: Logit models and logistic regressions for social networks. Psychometrika 60, 401–425 (1996)

    Google Scholar 

  33. Zheng, B., Wu, H., Kuang, L., Qin, J., Du, W., Wang, J., Li, D.: A simple model clarifies the complicated relationships of complex networks. Sci. Rep. 4, 6197 (2014). https://doi.org/10.1038/srep06197

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1762633.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Ventresca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arora, V., Ventresca, M. (2019). Evaluating the Natural Variability in Generative Models for Complex Networks. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 812. Springer, Cham. https://doi.org/10.1007/978-3-030-05411-3_59

Download citation

Publish with us

Policies and ethics