Skip to main content

Enhancing Synchronization Stability in Complex Networks with Probabilistic Natural Frequencies

  • Conference paper
  • First Online:
Complex Networks and Their Applications VII (COMPLEX NETWORKS 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 812))

Included in the following conference series:

  • 3137 Accesses

Abstract

Synchronization is crucial for different natural or artificial systems. In power grids, synchronization in the system is essential for stable electricity transmission. However, fluctuations in power supply and demand can destabilize synchronization, especially with the increasing deployment of renewable sources. In real-time applications, one can only access their probabilistic information in the near future. Hence the synchronization stability is no longer a well-defined value, and we need to minimize the tail of its distribution. Remarkably, we found that by optimizing the mean value of the synchronization stability, the variance is also reduced. Hence the load shedding scheme optimizing the mean stability is sufficient in the presence of probabilistic uncertainties of the natural frequencies. In addition, we introduce a vulnerability measure of individual nodes to demonstrate how the topology of the network affects the synchronization stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  2. Simeone, O., Spagnolini, U.: Distributed time synchronization in wireless sensor networks withcoupled discrete-time oscillators. EURASIP J. Wirel. Commun. Netw. 2007(1), 057054 (2007)

    Google Scholar 

  3. Kundur, P., Balu, N.J., Lauby, M.G.: Power System Stability and Control, vol. 7. McGraw-Hill, New York (1994)

    Google Scholar 

  4. Hill, D.J., Chen, G.: Power systems as dynamic networks. In: 2006 IEEE International Symposium on Circuits and Systems, 2006. ISCAS 2006. Proceedings. IEEE (2006)

    Google Scholar 

  5. Schmietendorf, K., Peinke, J., Friedrich, R., Kamps, O.: Self-organized synchronization and voltage stability in networks of synchronous machines. Eur. Phys. J. Spec. Top. 223(12), 2577–2592 (2014)

    Google Scholar 

  6. Machowski, J., Bialek, J., Bumby, J.R., Bumby, J.: Power System Dynamics and Stability. Wiley, New York (1997)

    Google Scholar 

  7. http://www.nerc.com/dawg/database.html. Information on electric systems disturbances in North America

  8. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69(4), 045104 (2004)

    Google Scholar 

  9. Witthaut, D., Timme, M.: Braess’s paradox in oscillator networks, desynchronization and poweroutage. New J. Phys. 14(8), 083036 (2012)

    Google Scholar 

  10. Menck, P.J., Heitzig, J., Kurths, J., Schellnhuber, H.J.: How dead ends undermine power grid stability. Nat. Commun. 5, 3969 (2014)

    Google Scholar 

  11. Harrison, E., Saad, D., Michael Wong, K.Y.: Message passing for distributed optimisation of power allocation with renewable resources. In: 2016 2nd International Conference on Intelligent Green Building and Smart Grid (IGBSG), pp. 1–6. IEEE (2016)

    Google Scholar 

  12. Bienstock, D., Chertkov, M., Harnett, S.: Chance-constrained optimal power flow: risk-aware network control under uncertainty. SIAM Rev. 56(3), 461–495 (2014)

    Google Scholar 

  13. Bienstock, D.: Optimal control of cascading power grid failures. In: 2011 50th IEEE Conference on Decision and control and European Control Conference (CDC-ECC), pp. 2166–2173. IEEE (2011)

    Google Scholar 

  14. Li, B., Michael Wong, K.Y.: Optimizing synchronization stability of the Kuramoto model in complex networks and power grids. Phys. Rev. E 95(1), 012207 (2017)

    Google Scholar 

  15. Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proc. Natl. Acad. Sci. 110(6), 2005–2010 (2013)

    Google Scholar 

  16. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    Google Scholar 

  17. Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50(6), 1539–1564 (2014)

    Google Scholar 

  18. Milanese, A., Sun, J., Nishikawa, T.: Approximating spectral impact of structural perturbations in large networks. Phys. Rev. E 81(4), 046112 (2010)

    Google Scholar 

  19. Chung, F.R.K., Graham, F.C.: Spectral Graph Theory, vol. 92. American Mathematical Society, Providence (1997)

    Google Scholar 

  20. Araposthatis, A., Sastry, S., Varaiya, P.: Analysis of power-flow equation. Int. J. Electr. Power Energy Syst. 3(3), 115–126 (1981)

    Google Scholar 

  21. Mallada, E., Tang, A.: Improving damping of power networks: power scheduling and impedance adaptation. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 7729–7734. IEEE (2011)

    Google Scholar 

  22. Grzybowski, J.M.V., Macau, E.E.N., Yoneyama, T.: On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators. Chaos Interdiscip. J. Nonlinear Sci. 26(11), 113113 (2016)

    Google Scholar 

  23. Grigg, C., et al.: The IEEE reliability test system-1996. a report prepared by the reliability test system task force of the application of probability methods subcommittee. IEEE Trans. Power Syst. 14(3), 1010–1020 (1999)

    Google Scholar 

Download references

Acknowledgement

We thank David Saad for fruitful discussions. This work is supported by research grants from the Research Grants Council of Hong Kong (grant numbers 16322616 and 16306817).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Henry Tsang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Henry Tsang, K.Y., Li, B., Michael Wong, K.Y. (2019). Enhancing Synchronization Stability in Complex Networks with Probabilistic Natural Frequencies. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 812. Springer, Cham. https://doi.org/10.1007/978-3-030-05411-3_68

Download citation

Publish with us

Policies and ethics