Skip to main content

Age Related Topological Analysis of Synchronization-Based Functional Connectivity

  • Conference paper
  • First Online:
Complex Networks and Their Applications VII (COMPLEX NETWORKS 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 813))

Included in the following conference series:

  • 2477 Accesses

Abstract

Network-based analysis methods of resting state fMRI data have revealed important aspects on the organization of the human brain. However, most of the known methods for quantifying functional coupling between fMRI time series are focused on linear correlation metrics. In this work, we used a synchronization index defined in the phase space of BOLD signals of a cohort of healthy subjects to construct their functional connectivity matrices. A regression analysis is then performed to identify age-related topological changes of synchronization-based functional connectivity. The results show that several brain regions exhibit significant age correlation, thus synchronization-based connectivity could be further be explored to investigate developmental and life-span trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://fcon_1000.projects.nitrc.org/indi/abide/.

  2. 2.

    http://preprocessed-connectomes-project.org/abide/.

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control. 19(6), 716–723 (1974)

    Article  MathSciNet  Google Scholar 

  2. Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neurosci. 13(5), 336–349 (2012)

    Article  Google Scholar 

  3. Cao, M., et al.: Topological organization of the human brain functional connectome across the lifespan. Dev. Cogn. Neurosci. 7, 76–93 (2014)

    Article  Google Scholar 

  4. Craddock, C., et al.: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Neuroinformatics (2013)

    Google Scholar 

  5. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659 (2014)

    Google Scholar 

  6. Fornito, A., Zalesky, A., Bullmore, E.: Fundamentals of Brain Network Analysis. Academic Press (2016)

    Google Scholar 

  7. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134 (1986)

    Article  MathSciNet  Google Scholar 

  8. Hirata, Y., Horai, S., Aihara, K.: Reproduction of distance matrices and original time series from recurrence plots and their applications. Eur. Phys. J. Spec. Top. 164(1), 13–22 (2008)

    Article  Google Scholar 

  9. Humphries, M.D., Gurney, K.: Network small-world-ness: a quantitative method for determining canonical network equivalence. PloS one 3(4), e0002051 (2008)

    Google Scholar 

  10. Jalili, M.: Functional brain networks: does the choice of dependency estimator and binarization method matter? Sci. Rep. 6, 29,780 (2016)

    Article  Google Scholar 

  11. Kennel, M.B., Brown, R., Abarbanel, H.D.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403 (1992)

    Article  Google Scholar 

  12. La Corte, V., et al.: Cognitive decline and reorganization of functional connectivity in healthy aging: the pivotal role of the salience network in the prediction of age and cognitive performances. Front. Aging Neurosci. 8, 204 (2016)

    Article  Google Scholar 

  13. Lombardi, A., et al.: A novel synchronization-based approach for functional connectivity analysis. Complexity 2017 (2017)

    Google Scholar 

  14. Marwan, N., Kurths, J.: Nonlinear analysis of bivariate data with cross recurrence plots. Phys. Lett. A 302(5), 299–307 (2002)

    Article  MathSciNet  Google Scholar 

  15. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5), 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  16. Morrison, J.L., Breitling, R., Higham, D.J., Gilbert, D.R.: Generank: using search engine technology for the analysis of microarray experiments. BMC Bioinform. 6(1), 233 (2005)

    Article  Google Scholar 

  17. Pereda, E., Quiroga, R.Q., Bhattacharya, J.: Nonlinear multivariate analysis of neurophysiological signals. Progr. Neurobiol. 77(1), 1–37 (2005)

    Article  Google Scholar 

  18. Shah, C., et al.: Age related changes in topological properties of brain functional network and structural connectivity. Front. Neurosci. 12, 318 (2018)

    Google Scholar 

  19. Sporns, O.: The human connectome: a complex network. Ann. N. Y. Acad. Sci. 1224(1), 109–125 (2011)

    Article  Google Scholar 

  20. Stam, C.J.: Nonlinear dynamical analysis of eeg and meg: review of an emerging field. Clin. Neurophysiol. 116(10), 2266–2301 (2005)

    Article  Google Scholar 

  21. Takens, F.: In: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  22. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Google Scholar 

  23. Webber Jr., C.L., Marwan, N.: Recurrence Quantification Analysis. Springer, Cham (2015)

    Google Scholar 

  24. Wu, K., et al.: Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence. PloS one 8(2), e55347 (2013)

    Google Scholar 

  25. Zbilut, J.P., Thomasson, N., Webber, C.L.: Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Med. Eng. Phys. 24(1), 53–60 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Lombardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lombardi, A., Amoroso, N., Diacono, D., Lella, E., Bellotti, R., Tangaro, S. (2019). Age Related Topological Analysis of Synchronization-Based Functional Connectivity. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-030-05414-4_52

Download citation

Publish with us

Policies and ethics