Skip to main content

Gamma-Star Canonical Forms in the Type-Theory of Acyclic Algorithms

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11352))

Included in the following conference series:

  • 961 Accesses

Abstract

This work elaborates on the theoretical results of the gamma-star reduction calculus and its potentials for applications in AI and other intelligent technologies. We strengthen the computational properties of the extended gamma-star calculus, by employing a stricter gamma-star rule and adding a formal, recursive definition of the gamma-star canonical forms. A term in a gamma-star normal form provides the algorithm for computing its denotation, without unnecessary calculations that can be required by the initial terms. The extended gamma-star reduction calculus redices every term to its gamma-star normal form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that recursive rules in BNF-style are not per se BNF rules, by using different meta-variables in the rules instead of nonterminals for syntactic categories.

References

  1. Hamm, F., van Lambalgen, M.: Moschovakis’ notion of meaning as applied to linguistics. In: Logic Colloqium, vol. 1 (2004)

    Google Scholar 

  2. Hurkens, A.J.C., McArthur, M., Moschovakis, Y.N., Moss, L.S., Whitney, G.T.: The logic of recursive equations. J. Symbol. Log. 63(2), 451–478 (1998). http://projecteuclid.org/euclid.jsl/1183745513

    Article  MathSciNet  Google Scholar 

  3. Loukanova, R.: Constraint based syntax of modifiers. In: 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, vol. 3, pp. 167–170 (2011). http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2011.229

  4. Loukanova, R.: From Montague’s rules of quantification to minimal recursion semantics and the language of acyclic recursion. In: Bel-Enguix, G., Dahl, V., Jiménez-López, M.D. (eds.) Biology, Computation and Linguistics – New Interdisciplinary Paradigms. Frontiers in Artificial Intelligence and Applications, vol. 228, pp. 200–214. IOS Press, Amsterdam (2011). http://ebooks.iospress.nl/volumearticle/6486

  5. Loukanova, R.: Minimal recursion semantics and the language of acyclic recursion. In: Bel-Enguix, G., Dahl, V., Puente, A.O.D.L. (eds.) AI Methods for Interdisciplinary Research in Language and Biology, pp. 88–97. SciTePress – Science and Technology Publications, Rome, January 2011. https://doi.org/10.5220/0003309800880097

  6. Loukanova, R.: Modeling context information for computational semantics with the language of acyclic recursion. In: Pérez, J.B., et al. (eds.) Highlights in Practical Applications of Agents and Multiagent Systems. AISC, vol. 89, pp. 265–274. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19917-2_32

    Chapter  Google Scholar 

  7. Loukanova, R.: Reference, co-reference and antecedent-anaphora in the type theory of acyclic recursion. In: Bel-Enguix, G., Jiménez-López, M.D. (eds.) Bio-Inspired Models for Natural and Formal Languages, pp. 81–102. Cambridge Scholars Publishing, Cambridge (2011). http://www.cambridgescholars.com/bio-inspired-models-for-natural-and-formal-languages-16

  8. Loukanova, R.: Semantics with the language of acyclic recursion in constraint-based grammar. In: Bel-Enguix, G., Jiménez-López, M.D. (eds.) Bio-inspired Models for Natural and Formal Languages, pp. 103–134. Cambridge Scholars Publishing, Cambridge (2011). http://www.cambridgescholars.com/bio-inspired-models-for-natural-and-formal-languages-16

  9. Loukanova, R.: Syntax-semantics interface for lexical inflection with the language of acyclic recursion. In: Bel-Enguix, G., Dahl, V., Jiménez-López, M.D. (eds.) Biology, Computation and Linguistics – New Interdisciplinary Paradigms, Frontiers in Artificial Intelligence and Applications, vol. 228, pp. 215–236. IOS Press, Amsterdam (2011). http://ebooks.iospress.nl/volumearticle/6487

  10. Loukanova, R.: Algorithmic semantics of ambiguous modifiers by the type theory of acyclic recursion. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 3, pp. 117–121 (2012). https://doi.org/10.1109/WI-IAT.2012.246

  11. Loukanova, R.: Semantic information with type theory of acyclic recursion. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, pp. 387–398. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35236-2_39

    Chapter  Google Scholar 

  12. Loukanova, R.: Algorithmic granularity with constraints. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds.) BHI 2013. LNCS (LNAI), vol. 8211, pp. 399–408. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02753-1_40

    Chapter  Google Scholar 

  13. Loukanova, R.: Algorithmic semantics for processing pronominal verbal phrases. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS (LNAI), vol. 8132, pp. 164–175. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40769-7_15

    Chapter  Google Scholar 

  14. Loukanova, R.: A predicative operator and underspecification by the type theory of acyclic recursion. In: Duchier, D., Parmentier, Y. (eds.) CSLP 2012. LNCS, vol. 8114, pp. 108–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41578-4_7

    Chapter  Google Scholar 

  15. Loukanova, R.: Situation theory, situated information, and situated agents. In: Nguyen, N.T., Kowalczyk, R., Fred, A., Joaquim, F. (eds.) Transactions on Computational Collective Intelligence XVII. LNCS, vol. 8790, pp. 145–170. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44994-3_8

    Chapter  Google Scholar 

  16. Loukanova, R.: Representing parametric concepts with situation theory. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (ed.) Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, vol. 5, pp. 89–100. IEEE (2015). (Ann. Comput. Sci. Inf. Syst.). https://doi.org/10.15439/2015F409

  17. Loukanova, R.: Underspecified relations with a formal language of situation theory. In: Loiseau, S., Filipe, J., Duval, B., van den Herik, J. (eds.) Proceedings of the 7th International Conference on Agents and Artificial Intelligence, vol. 1, pp. 298–309. SCITEPRESS – Science and Technology Publications, Lda. (2015). https://doi.org/10.5220/0005353402980309

  18. Loukanova, R.: Acyclic recursion with polymorphic types and underspecification. In: van den Herik, J., Filipe, J. (eds.) Proceedings of the 8th International Conference on Agents and Artificial Intelligence, vol. 2, pp. 392–399. SCITEPRESS – Science and Technology Publications, Lda. (2016). https://doi.org/10.5220/0005749003920399

  19. Loukanova, R.: Relationships between specified and underspecified quantification by the theory of acyclic recursion. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 5(4), 19–42 (2016). http://campus.usal.es/~revistas_trabajo/index.php/2255-2863/article/view/ADCAIJ2016541942

    Article  Google Scholar 

  20. Loukanova, R.: Specification of underspecified quantifiers via question-answering by the theory of acyclic recursion. In: Andreasen, T., et al. (eds.) Flexible Query Answering Systems 2015. AISC, vol. 400, pp. 57–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26154-6_5

    Chapter  Google Scholar 

  21. Loukanova, R.: Binding operators in type-theory of algorithms for algorithmic binding of functional neuro-receptors. In: 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), vol. 11, pp. 57–66. IEEE (2017). https://doi.org/10.15439/2017F465

  22. Loukanova, R.: Typed theory of situated information and its application to syntax-semantics of human language. In: Christiansen, H., Jiménez-López, M.D., Loukanova, R., Moss, L.S. (eds.) Partiality and Underspecification in Information, Languages, and Knowledge, pp. 151–188. Cambridge Scholars Publishing,Cambridge (2017). http://www.cambridgescholars.com/partiality-and-underspecification-in-information-languages-and-knowledge

  23. Loukanova, R.: Gamma-star reduction in the type-theory of acyclic algorithms. In: Rocha, A.P., van den Herik, J. (eds.) Proceedings of the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018), vol. 2, pp. 231–242. INSTICC, SciTePress – Science and Technology Publications, Lda. (2018). https://dx.doi.org/10.5220/0006662802310242

  24. Loukanova, R., Jiménez-López, M.D.: On the syntax-semantics interface of argument marking prepositional phrases. In: Pérez, J.B., et al. (eds.) Highlights on Practical Applications of Agents and Multi-Agent Systems. Advances in Intelligent and Soft Computing, vol. 156, pp. 53–60. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28762-6_7

    Chapter  Google Scholar 

  25. Moschovakis, Y.N.: The formal language of recursion. J. Symbol. Log. 54(04), 1216–1252 (1989)

    Article  MathSciNet  Google Scholar 

  26. Moschovakis, Y.N.: Sense and denotation as algorithm and value. In: Oikkonen, J., Vaananen, J. (eds.) Logic Colloquium’90. LNL, vol. 2, pp. 210–249. Springer, Heidelberg (1994)

    Google Scholar 

  27. Moschovakis, Y.N.: The logic of functional recursion. In: Dalla Chiara, M.L., Doets, K., Mundici, D., van Benthem, J. (eds.) Logic and Scientific Methods, vol. 259, pp. 179–207. Springer, Dordrecht (1997). https://doi.org/10.1007/978-94-017-0487-8_10

    Chapter  MATH  Google Scholar 

  28. Moschovakis, Y.N.: A logical calculus of meaning and synonymy. Linguist. Philos. 29(1), 27–89 (2006). https://doi.org/10.1007/s10988-005-6920-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roussanka Loukanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loukanova, R. (2019). Gamma-Star Canonical Forms in the Type-Theory of Acyclic Algorithms. In: van den Herik, J., Rocha, A. (eds) Agents and Artificial Intelligence. ICAART 2018. Lecture Notes in Computer Science(), vol 11352. Springer, Cham. https://doi.org/10.1007/978-3-030-05453-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05453-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05452-6

  • Online ISBN: 978-3-030-05453-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics