Skip to main content

Planning Under Uncertainty Through Goal-Driven Action Selection

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11352))

Included in the following conference series:

  • 1046 Accesses

Abstract

Online planning in domains with uncertainty and partial observability conveys a series of performance challenges: agents must obtain information about the environment, quickly select actions with high reward prospects and avoid very expensive mistakes, while interleaving planning and execution in highly variable and uncertain domains. In order to reduce the amount of mistakes and help an agent focus on directly relevant actions, we propose a goal-driven, action selection method for planning in (PO)MDP’s. This method introduces a reward bonus and a rollout policy for MCTS planners, both of which depend almost exclusively on a clear specification of the goal and produced promising results when planning in large domains of interest to cognitive and mobile robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    Chapter  Google Scholar 

  2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47, 235–256 (2002)

    Article  Google Scholar 

  3. Silver, D., Veness, J.: Monte-Carlo planning in large POMDPs. Adv. Neural Inf. Process. Syst. 23, 2164–2172 (2010)

    Google Scholar 

  4. Saborío, J.C., Hertzberg, J.: Towards domain-independent biases for action selection in robotic task-planning under uncertainty. In: Proceedings of the 10th International Conference on Agents and Artificial Intelligence, ICAART, INSTICC, vol. 2, pp. 85–93. SciTePress (2018)

    Google Scholar 

  5. Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable Markov processes over a finite Horizon. Oper. Res. 21, 1071–1088 (1973)

    Article  Google Scholar 

  6. Cassandra, A.R., Kaelbling, L.P., Littman, M.L.: Acting optimally in partially observable stochastic domains. In: Proceedings of the 12th National Conference on Artificial Intelligence, Seattle, WA, USA, 31 July – 4 August, vol. 2, pp. 1023–1028 (1994)

    Google Scholar 

  7. Cassandra, A.R., Littman, M.L., Zhang, N.L.: Incremental pruning: a simple, fast, exact method for partially observable markov decision processes. In: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, UAI 1997, Brown University, Providence, Rhode Island, USA, 1–3 August 1997, pp. 54–61 (1997)

    Google Scholar 

  8. Smith, T., Simmons, R.: Heuristic search value iteration for POMDPs. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI 2004, pp. 520–527. AUAI Press, Arlington (2004)

    Google Scholar 

  9. Pineau, J., Gordon, G.J., Thrun, S.: Anytime point-based approximations for large POMDPs. J. Artif. Intell. Res. 27, 335–380 (2006)

    Article  Google Scholar 

  10. Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: efficient point-based POMDP planning by approximating optimally reachable belief spaces. In: Robotics: Science and Systems IV, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland, 25–28 June 2008 (2008)

    Google Scholar 

  11. Ong, S.C.W., Png, S.W., Hsu, D., Lee, W.S.: Planning under uncertainty for robotic tasks with mixed observability. Int. J. Rob. Res. 29, 1053–1068 (2010)

    Article  Google Scholar 

  12. Somani, A., Ye, N., Hsu, D., Lee, W.S.: DESPOT: online POMDP planning with regularization. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 1772–1780. Curran Associates, Inc. (2013)

    Google Scholar 

  13. Pineau, J., Gordon, G., Thrun, S.: Policy-contingent abstraction for robust robot control. In: Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, UAI 2003, pp. 477–484. Morgan Kaufmann Publishers Inc., San Francisco (2003)

    Google Scholar 

  14. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. MIT Press, Cambridge (2012). (to be published)

    Google Scholar 

  15. Hester, T., Stone, P.: TEXPLORE: real-time sample-efficient reinforcement learning for robots. Mach. Learn. 90, 385–429 (2013)

    Article  MathSciNet  Google Scholar 

  16. Sutton, R., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning. Artif. Intell. 112, 181–211 (1999)

    Article  MathSciNet  Google Scholar 

  17. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function decomposition. J. Artif. Intell. Res. 13, 227–303 (2000)

    Article  MathSciNet  Google Scholar 

  18. Konidaris, G.: Constructing abstraction hierarchies using a skill-symbol loop. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 1648–1654 (2016)

    Google Scholar 

  19. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations: theory and application to reward shaping. In: Proceedings of the Sixteenth International Conference on Machine Learning, pp. 278–287. Morgan Kaufmann (1999)

    Google Scholar 

  20. Eck, A., Soh, L.K., Devlin, S., Kudenko, D.: Potential-based reward shaping for finite Horizon online POMDP planning. Auton. Agents Multi-agent Syst. 30, 403–445 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank our colleagues Sebastian Pütz and Felix Igelbrink for their suggested reward distribution in the Cellar domain, and the DAAD for supporting this work with a research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Saborío .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saborío, J.C., Hertzberg, J. (2019). Planning Under Uncertainty Through Goal-Driven Action Selection. In: van den Herik, J., Rocha, A. (eds) Agents and Artificial Intelligence. ICAART 2018. Lecture Notes in Computer Science(), vol 11352. Springer, Cham. https://doi.org/10.1007/978-3-030-05453-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05453-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05452-6

  • Online ISBN: 978-3-030-05453-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics