Skip to main content

Comparative Analysis of Our Association Rules Based Approach and a Genetic Approach for OLAP Partitioning

  • Conference paper
  • First Online:
Networked Systems (NETYS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11028))

Included in the following conference series:

  • 414 Accesses

Abstract

OLAP databases remain the first choice of enterprises to store and analyze huge amount of data. Thereby, to further enhance query performances and minimize the maintenance cost, many techniques exist, among which data partitioning is considered as an efficient technique to achieve this purpose. Although most of business intelligence tools support this feature, defining an appropriate partitioning strategy remains a big challenge. Hence, many approaches have been proposed in the literature. Nevertheless, most of them have been evaluated only in relational model. Therefore, we propose in this paper, a comparative study between our partitioning approach based on the association rules algorithm and a genetic based one. The study aims to compare the results of the aforementioned approaches in case of OLAP partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Inmon, W.H.: Building the Data Warehouse. Wiley, Hoboken (2005)

    Google Scholar 

  2. Ponniah, P.: Data Warehousing Fundamentals: A Comprehensive Guide for IT Professionals. Wiley, Hobokens (2001)

    Book  Google Scholar 

  3. Letrache, K., El Beggar, O., Ramdani, M.: The automatic creation of OLAP cube using an MDA approach. Softw.: Pract. Exp., 117 (2017). https://doi.org/10.1002/spe.2512

  4. Bellatreche, L., Boukhalfa, K.: An evolutionary approach to schema partitioning selection in a data warehouse. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589, pp. 115–125. Springer, Heidelberg (2005). https://doi.org/10.1007/11546849_12

    Chapter  Google Scholar 

  5. Bellatreche, L., Boukhalfa, K., Richard, P.: Referential horizontal partitioning selection problem in data warehouses: hardness study and selection algorithms. Int. J. Data Warehous. Min. 5(4), 1–23 (2009)

    Article  Google Scholar 

  6. Bellatreche, L., Boukhalfa, K., Richard, P.: Data partitioning in data warehouses: hardness study, heuristics and ORACLE validation. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 87–96. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85836-2_9

    Chapter  Google Scholar 

  7. Amirat, H., Boukhalfa, K.: A data mining-based approach for data warehouse optimisation. In: ICA2IT International Conference on Artificial Intelligence and Information Technology (2014)

    Google Scholar 

  8. Bouchakri, R., Bellatreche, L., Faget, Z., Bre, S.: A coding template for handling static and incremental horizontal partitioning in data warehouses. J. Decis. Syst. 23(4), 481–498 (2014)

    Article  Google Scholar 

  9. Toumi, L., Moussaoui, A., Ugur, A.: EMeD-part: an efficient methodology for horizontal partitioning in data warehouses. In: ACM IPAC 2015, Batna, Algeria (2015)

    Google Scholar 

  10. Sun, L., Krishnan, S., Xin, R.S., Franklin, M.J.: A Partitioning Framework for Aggressive Data Skipping. In: International Conference on Very Large Data Bases, Hangzhou, China (2014)

    Google Scholar 

  11. Arres, B., Kabachi, N., Boussaid, O.: A data pre-partitioning and distribution optimization approach for distributed datawarehouses. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Athens, pp. 454–461 (2015)

    Google Scholar 

  12. Kim, J.W., Cho, S.H., Il-Min, K.: Workload-based column partitioning to efficiently process data warehouse query. Int. J. Appl. Eng. Res. 11(2), 917–921 (2016)

    Google Scholar 

  13. Meta Data Coalition Open Information Model Version 1.1, August 1999

    Google Scholar 

  14. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Elsevier Inc, Amsterdam (2006)

    MATH  Google Scholar 

  15. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIG MOD Conference, Washington DC, USA, May 1993 (1993)

    Google Scholar 

  16. Mitchell, M.: An Introduction to Genetic Algorithms. A Bradford Book. The MIT Press, Cambridge (1999)

    Google Scholar 

  17. TPC-DS database. http://www.tpc.org/tpcds. Accessed 21 Nov 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadija Letrache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Letrache, K., El Beggar, O., Ramdani, M. (2019). Comparative Analysis of Our Association Rules Based Approach and a Genetic Approach for OLAP Partitioning. In: Podelski, A., Taïani, F. (eds) Networked Systems. NETYS 2018. Lecture Notes in Computer Science(), vol 11028. Springer, Cham. https://doi.org/10.1007/978-3-030-05529-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05529-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05528-8

  • Online ISBN: 978-3-030-05529-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics