Skip to main content

Emotion Recognition Based on Gramian Encoding Visualization

  • Conference paper
  • First Online:
Brain Informatics (BI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11309))

Included in the following conference series:

Abstract

This paper addresses the problem that emotional computing is difficult to be put into real practical fields intuitively, such as medical disease diagnosis and so on, due to poor direct understanding of physiological signals. In view of the fact that people’s ability to understand two-dimensional images is much higher than one-dimensional signals, we use Gramian Angular Fields to visualize time series signals. GAF images are represented as a Gramian matrix where each element is the trigonometric sum between different time intervals. Then we use Tiled Convolutional Neural Networks (tiled CNNs) on 3 real world datasets to learn high-level features from GAF images. The classification results of our method are better than the state-of-the-art approaches. This method makes visualization based emotion recognition become possible, which is beneficial in the real medical fields, such as making cognitive disease diagnosis more intuitively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://bcmi.sjtu.edu.cn/~seed/.

  2. 2.

    http://www.eecs.qmul.ac.uk/mmv/datasets/deap/.

References

  1. Tzirakis, P., Trigeorgis, G., Nicolaou, M.A., Schuller, B.W., Zafeiriou, S.: End-to-end multimodal emotion recognition using deep neural networks. IEEE J. Sel. Top. Signal Process. 11, 1301–1309 (2017)

    Article  Google Scholar 

  2. Lu, Y., Zheng, W.-L., Li, B., Lu, B.-L.: Combining eye movements and EEG to enhance emotion recognition. In: IJCAI (2015)

    Google Scholar 

  3. Liu, W., Zheng, W.-L., Lu, B.-L.: Multimodal emotion recognition using multimodal deep learning. CoRR, vol. abs/1602.08225 (2016)

    Google Scholar 

  4. Tang, H., Liu, W., Zheng, W.-L., Lu, B.-L.: Multimodal emotion recognition using deep neural networks. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) ICONIP 2017, Part IV. LNCS, vol. 10637, pp. 811–819. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70093-9_86

    Chapter  Google Scholar 

  5. Zheng, W.-L., Zhu, J.-Y., Peng, Y., Lu, B.-L.: EEG-based emotion classification using deep belief networks. In: 2014 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2014)

    Google Scholar 

  6. Zheng, W.-L., Liu, W., Lu, Y., Lu, B.-L., Cichocki, A.: Emotionmeter: a multimodal framework for recognizing human emotions. IEEE Trans. Cybern. 99, 1–13 (2018)

    Google Scholar 

  7. Schuller, B.W., Rigoll, G., Lang, M.K.: Hidden Markov model-based speech emotion recognition. In: ICME (2003)

    Google Scholar 

  8. Kim, K.H., Bang, S.W., Kim, S.R.: Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 42, 419–427 (2004)

    Article  Google Scholar 

  9. Reynolds, D.A., Rose, R.C.: Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans. Speech Audio Process. 3(1), 72–83 (1995)

    Article  Google Scholar 

  10. Leggetter, C., Woodland, P.C.: Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models. Comput. Speech Lang. 9, 171–185 (1995)

    Article  Google Scholar 

  11. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  12. Rahman Mohamed, A., Dahl, G.E., Hinton, G.E.: Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process. 20, 14–22 (2012)

    Article  Google Scholar 

  13. Hinton, G.E., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97 (2012)

    Article  Google Scholar 

  14. Deng, L., Hinton, G.E., Kingsbury, B.: New types of deep neural network learning for speech recognition and related applications: an overview. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8599–8603 (2013)

    Google Scholar 

  15. Deng, L., et al.: Recent advances in deep learning for speech research at Microsoft. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8604–8608 (2013)

    Google Scholar 

  16. LeCun, Y.: Gradient-based learning applied to document recognition (1998)

    Article  Google Scholar 

  17. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cats visual cortex. J. Physiol. 160, 106–154 (1962)

    Article  Google Scholar 

  18. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

    Article  Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  20. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 253–256 (2010)

    Google Scholar 

  21. Erhan, D., et al.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Kavukcuoglu, K., et al.: Learning convolutional feature hierarchies for visual recognition. In: NIPS (2010)

    Google Scholar 

  23. Le, Q.V., Ngiam, J., Chen, Z., Hao Chia, D.J., Koh, P.W., Ng, A.Y.: Tiled convolutional neural networks. In: NIPS (2010)

    Google Scholar 

  24. Abdel-Hamid, O., Rahman Mohamed, A., Jiang, H., Penn, G.: Applying convolutional neural networks concepts to hybrid nn-hmm model for speech recognition. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4277–4280 (2012)

    Google Scholar 

  25. Deng, L., Abdel-Hamid, O., Yu, D.: A deep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6669–6673 (2013)

    Google Scholar 

  26. Abdel-Hamid, O., Deng, L., Yu, D.: Exploring convolutional neural network structures and optimization techniques for speech recognition. In: INTER-SPEECH (2013)

    Google Scholar 

  27. Campanharo, A.S.L.O., Sirer, M.I., Malmgren, R.D., Ramos, F.M., Amaral, L.A.N.: Duality between time series and networks. PloS One 6, e23378 (2011)

    Article  Google Scholar 

  28. Wang, Z., Oates, T.: Encoding time series as images for visual inspection and classification using tiled convolutional neural networks (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-Lin Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, JL., Qiu, XY., Hu, K. (2018). Emotion Recognition Based on Gramian Encoding Visualization. In: Wang, S., et al. Brain Informatics. BI 2018. Lecture Notes in Computer Science(), vol 11309. Springer, Cham. https://doi.org/10.1007/978-3-030-05587-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05587-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05586-8

  • Online ISBN: 978-3-030-05587-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics