Abstract
In real-life scenarios, outside of the laboratory setting, the performance of brain-computer interface (BCI) systems is influenced by the user’s mental state such as attentional diversion. Here, we propose a novel online BCI system able to adapt with variations in the users’ attention during real-time movement execution. Electroencephalography (EEG) signals were recorded from twelve channels in twelve healthy participants and two stroke patients while performing 50 trials of ankle dorsiflexion simultaneously with an auditory oddball task. For each participant, the selected channels, classifiers and features from the offline mode were used in the online mode to predict the attention status. For both healthy controls and subacute stroke patients, feedback to the user on attentional status reduced the amount of attentional diversion created by the oddball task. The findings presented here demonstrate that the users’ attention can be monitored in a fully online BCI system, and further, that real-time neurofeedback on the attentional state of the user can be implemented to focus the attention of the user back onto the main task of the BCI for neuromodulation. Monitoring the users’ attention status will have a major impact in the BCI for neurorehabilitation area in the future.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M. Esghaei, M.R. Daliri, Decoding of visual attention from LFP signals of macaque MT. PLoS ONE 9(6), 1–10 (2014)
M.S. Treder, B. Blankertz, (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behav. Brain Funct. 6(1), 28 (2010)
D. Purves, Principles of Cognitive Neuroscience (W. H. Freeman, New York, 2008)
A. Lutz, H.A. Slagter, N.B. Rawlings, A.D. Francis, L.L. Greischar, R.J. Davidson, Mental training enhances attentional stability: neural and behavioral evidence. J. Neurosci. 29(42), 13418–13427 (2009)
J. Kawatani, K. Mizuno, S. Shiraishi, M. Takao, T. Joudoi, S. Fukuda et al., Cognitive dysfunction and mental fatigue in childhood chronic fatigue syndrome—a 6-month follow-up study. Brain Dev. 33(10), 832–841 (2011)
K. Mizuno, M. Tanaka, S. Fukuda, K. Imai-Matsumura, Y. Watanabe, Relationship between cognitive functions and prevalence of fatigue in elementary and junior high school students. Brain Dev. 33(6), 470–479 (2011)
Y. Gao, Q. Wang, Y. Ding, C. Wang, H. Li, X. Wu et al., Selective attention enhances beta-band cortical oscillation to speech under cocktail-party listening conditions. Front. Hum. Neurosci. 11, 34 (2017)
S. Aliakbaryhosseinabadi, E.N. Kamavuako, N. Jiang, D. Farina, N. Mrachacz-Kersting, Influence of dual-tasking with different levels of attention diversion on characteristics of the movement-related cortical potential. Brain Res. 1674, 10–19 (2017)
S. Aliakbaryhosseinabadi, E.N. Kamavuako, N. Jiang, D. Farina, N. Mrachacz-Kersting, Classification of EEG signals to identify variations in attention during motor task execution. J. Neurosci. Methods 284, 27–34 (2017)
S. Paul, N. Kathmann, A. Riesel, The costs of distraction: the effect of distraction during repeated picture processing on the LPP. Biol. Psychol. 117, 225–234 (2016)
M.A. Ghazanfar, M. Cook, B. Tang, I. Tait, A. Alijani, The effect of divided attention on novices and experts in laparoscopic task performance. Surg. Endosc. 29(3), 614–619 (2015)
E. Vaportzis, N. Georgiou-Karistianis, J.C. Stout, Age and task difficulty differences in dual tasking using circle tracing and serial subtraction tasks. Aging Clin. Exp. Res. 26(2), 201–211 (2014)
S.D. Newman, T.A. Keller, M.A. Just, Volitional control of attention and brain activation in dual task performance. Hum. Brain Mapp. 28(2), 109–117 (2007)
Y. Liu, H. Ayaz, A. Curtin, P.A. Shewokis, B. Onaral, Detection of attention shift for asynchronous P300-based BCI. Conf. Proc. IEEE Eng. Med. Biol. Soc. 3850, 3850–3853 (2012)
R.N. Roy, S. Bonnet, S. Charbonnier, A. Campagne, Mental fatigue and working memory load estimation: interaction and implications for EEG-based passive BCI. Conf. Proc. IEEE Eng. Med. Biol. Soc. 6607, 6607–6610 (2013)
L.V. Kulke, J. Atkinson, O. Braddick, Neural differences between covert and overt attention studied using EEG with simultaneous remote eye tracking. Front. Hum. Neurosci. 10, 592 (2016)
P. Praamstra, L. Boutsen, G.W. Humphreys, Frontoparietal control of spatial attention and motor intention in human EEG. J. Neurophysiol. 94(1), 764–774 (2005)
P. Horki, G. Bauernfeind, W. Schippinger, G. Pichler, G.R. Müller-Putz, Evaluation of induced and evoked changes in EEG during selective attention to verbal stimuli. J. Neurosci. Methods 270, 165–176 (2016)
J. Ramirez, M. Bomba, A. Singhal, B. Fowler, Influence of a visual spatial attention task on auditory early and late Nd and P300. Biol. Psychol. 68(2), 121–134 (2005)
J.M. Sangal, R.B. Sangal, B. Persky, Abnormal auditory P300 topography in attention deficit disorder predicts poor response to pemoline. Clin. Electroencephalogr. 26(4), 204–213 (1995)
S. Aliakbaryhosseinabadi, V. Kostic, A. Pavlovic, S. Radovanovic, E.N. Kamavuako, N. Jiang et al., Influence of attention alternation on movement-related cortical potentials in healthy individuals and stroke patients. Clin. Neurophysiology. 128(1), 165–175 (2017)
A. Myrden, T. Chau, Effects of user mental state on EEG-BCI performance. Front. Hum. Neurosci. 9, 308 (2015)
D.O. Hebb, The organization of behavior: a neuropsychological theory (L. Erlbaum Associates, Mahwah, N.J., 2002)
N. Mrachacz-Kersting, S.R. Kristensen, I.K. Niazi, D. Farina, Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J. Physiol. 590(7), 1669–1682 (2012)
U. Ziemann, W. Paulus, M.A. Nitsche, A. Pascual-Leone, W.D. Byblow, A. Berardelli et al., Consensus: motor cortex plasticity protocols. Brain Stimul. 1(3), 164–1682 (2008)
K. Stefan, M. Wycislo, J. Classen, Modulation of associative human motor cortical plasticity by attention. J. Neurophysiol. 92(1), 66–72 (2004)
M. Pekna, M. Pekny, M. Nilsson, Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke 43(10), 2819–2828 (2012)
H. Cecotti, R.W. Kasper, J.C. Elliott, M.P. Eckstein, B. Giesbrecht, Multimodal target detection using single trial evoked EEG responses in single and dual-tasks. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 6311–6314 (2011)
S.A. Bunge, T. Klingberg, R.B. Jacobsen, J.D. Gabrieli, A resource model of the neural basis of executive working memory. Proc. Natl. Acad. Sci. U S A 97(7), 3573–3578 (2000)
F. Nijboer, E.W. Sellers, J. Mellinger, M.A. Jordan, T. Matuz, A. Furdea et al., A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin. Neurophysiol. 119(8), 1909–1916 (2008)
J.W. Grabbe, P.A. Allen, Cross-task compatibility and age-related dual-task performance. Exp. Aging Res. 38(5), 469–487 (2012)
E. Salo, T. Rinne, O. Salonen, K. Alho, Brain activity during auditory and visual phonological, spatial and simple discrimination tasks. Brain Res. 1496, 55–69 (2013)
D.D. Salvucci, N.A. Taatgen, Threaded cognition: an integrated theory of concurrent multitasking. Psychol. Rev. 115(1), 101–130 (2008)
K.M. Halvorson, What causes dual-task costs? University of Lowa (2013)
E. Kodesh, R. Kizony, Measuring cardiopulmonary parameters during dual-task while walking. J. Basic Clin. Physiol. Pharmacol. 25(2), 155–160 (2014)
O. Beauchet, C. Annweiler, V. Dubost, G. Allali, R.W. Kressig, S. Bridenbaugh et al., Stops walking when talking: a predictor of falls in older adults? Eur. J. Neurol. 16(7), 786–795 (2009)
T. Asai, T. Doi, S. Hirata, H. Ando, Dual tasking affects lateral trunk control in healthy younger and older adults. Gait Posture 38(4), 830–836 (2013)
W.W.N. Tsang, N.K.Y. Lam, K.N.L. Lau, H.C.H. Leung, C.M.S. Tsang, X. Lu, The effects of aging on postural control and selective attention when stepping down while performing a concurrent auditory response task. Eur. J. Appl. Physiol. 113(12), 3021–3026 (2013)
P.A. Allen, M. Sliwinski, T. Bowie, Differential age effects in semantic and episodic memory, Part II: slope and intercept analyses. Exp. Aging Res. 28(2), 111–142 (2002)
P.A. Allen, E. Ruthruff, J.D. Elicker, M. Lien, Multisession, dual-task psychological refractory period practice benefits older and younger adults equally. Exp. Aging Res. 35(4), 369,369–399 (2009)
V.L. Barbour, G.E. Mead, Fatigue after stroke: the patient’s perspective. Stroke Res. Treat. 2012, 1–6 (2012)
J. Serences, EEG and fMRI provide different insights into the link between attention and behavior in human visual cortex. J. Vision 15(12), 1413 (2015)
Y. Fu, B. Xu, Y. Li, Y. Wang, Z. Yu, H. Li, Single-trial decoding of imagined grip force parameters involving the right or left hand based on movement-related cortical potentials. Chin. Sci. Bull. 59(16), 1907–1916 (2014)
S.K. Kisiel, V. Siemionow, L.D. Zhang, J. Mencel, G.H. Yue, A. Jaskolska et al., The magnitude of the movement-related cortical potentials during fast and slow voluntary knee extensor deactivation. Acta Neurobiol. Exp. 72(2), 204–205 (2012)
S. Aliakbaryhosseinabadi, N. Jiang, L. Petrini, D. Farina, K. Dremstrup, N. Mrachacz-Kersting, Robustness of movement detection techniques from motor execution: Single trial movement related cortical potential. Conf. Proc. IEEE NER, 2015 (2015)
R. Palaniappan, Brain computer interface design using band powers extracted during mental tasks. Conf. Proc. IEEE EMBS Neural. Eng, 2005 (2005)
A.S. Gevins, J.C. Doyle, G.M. Zeitlin, Comments on “the clinical EEG-a search for a buried message”. IEEE Trans. Biomed. Eng. 25(6), 568–569 (1978)
A.M. Waters, J. Henry, K. Mogg, B.P. Bradley, D.S. Pine, Attentional bias towards angry faces in childhood anxiety disorders. J. Behav. Ther. Exp. Psychiatry 41(2), 158–164 (2010)
T.O. Zander, C. Kothe, Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J. Neural Eng. 8(2), 025005 (2011)
K. Dijkstra, P. Brunner, A. Gunduz, W. Coon, A.L. Ritaccio, J. Farquhar et al., Identifying the attended speaker using electrocorticographic (ECoG) signals. Brain Comput. Interfaces 2(4), 161–173 (2015)
R.V. Chacko, B. Kim, S.W. Jung, A.L. Daitch, J.L. Roland, N.V. Metcalf et al., Distinct phase-amplitude couplings distinguish cognitive processes in human attention. Neuroimage 175, 111–121 (2018)
R.F. Helfrich, I.C. Fiebelkorn, S.M. Szczepanski, J.J. Lin, J. Parvizi, R.T. Knight et al., Neural mechanisms of sustained attention are rhythmic. Neuron 99(4), 854–865 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Aliakbaryhosseinabadi, S., Kamavuako, E.N., Jiang, N., Farina, D., Mrachacz-Kersting, N. (2019). Online Adaptive Synchronous BCI System with Attention Variations. In: Guger, C., Mrachacz-Kersting, N., Allison, B. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-05668-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-05668-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05667-4
Online ISBN: 978-3-030-05668-1
eBook Packages: Computer ScienceComputer Science (R0)