
HAL Id: hal-02279557
https://inria.hal.science/hal-02279557

Submitted on 5 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

FSObserver: A Performance Measurement and
Monitoring Tool for Distributed Storage Systems
Xiao Zhang, Lanxin Kong, Shunyi Zhu, Zhanhuai Li, Xiaonan Zhao

To cite this version:
Xiao Zhang, Lanxin Kong, Shunyi Zhu, Zhanhuai Li, Xiaonan Zhao. FSObserver: A Performance Mea-
surement and Monitoring Tool for Distributed Storage Systems. 15th IFIP International Conference
on Network and Parallel Computing (NPC), Nov 2018, Muroran, Japan. pp.142-147, �10.1007/978-3-
030-05677-3_14�. �hal-02279557�

https://inria.hal.science/hal-02279557
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


FSObserver: A Performance Measurement and
Monitoring Tool for Distributed Storage Systems

Xiao Zhang1,2, Lanxin Kong1, Shunyi Zhu1, Zhanhuai Li1,2, Xiaonan Zhao1,2

1 School of Computer Science Northwestern Polytechnical University Xi’an China
2 MIIT Key Laboratory of Big Data Storage and Management, Xi’an China

zhangxiao@nwpu.edu.cn

Abstract. It is a big challenge to measure and monitor the performance
of a large-scale distributed storage system accurately.We present a flex-
ible approach based on the message analysis, named FSObserver, which
can accurately and fine-grained trace individual request or response by
observing network traffic. Experiments results show that our approach
can get accurate performance with slight performance degradation.

1 Introduction

Over the past few years, there are tremendous efforts to evaluate and debug
the performance problems of large-scale distributed storage systems. Some prac-
titioners concentrate on monitoring individual devices and machines indepen-
dently. Some researchers focus on detailed analysis of all messages by inserting
some unique IDs into messages during instrumenting the system. Some others
are immersed in the study of the storage system log[1]. System evaluation based
on inner messages analysis has been intensively studied in [2][3]. When design-
ing a monitoring and evaluation system, we should consider the independence,
accuracy, high performance, and broad-applicability.

In this paper, we propose FSObserver, an out-of-band approach to capture
performance related messages between clients and servers. It extracts perfor-
mance characteristics from the messages. The core idea of FSObserver is to
capture the request and reply messages between clients and servers. It extracts
the time, size and operations information from messages. The size of this infor-
mation is very small compared with the size of the messages. By analyzing each
individual message, we can accurately evaluate the performance characteristics
such as IOPS, throughput, and latency.

In the following sections, we discuss how to monitor and evaluate the Ceph
distributed file system, and show the experiment results.

The remainder of the paper is organized as follows. In Section 2 we present the
related work that evaluates Ceph and other distributed storage systems. Section
3 describes the architecture of FSObserver, and explains how it works on the
Ceph distributed file system. Section 4 illustrates the performance evaluation
results of FSObserver and other widely used tools fio3 respectively. Finally, we
conclude this paper and present the future work of this study.

3 http://freshmeat.net/projects/fio/



2 Related work

Performance of a distributed storage system is very important in data centers.
Past studies proposed various methods to debug and diagnose the systems. They
concentrated on the in-band and out-of-band monitoring systems, black box and
white box, intrusive, and log analysis and so on. There are several tools devel-
oped to monitor the performance of Ceph clusters4.Many black-box diagnosis
techniques have been devised for performance evaluation in distributed systems.
Dianna et al. used 5 tools to evaluate the performance and scalability of the
Ceph distributed storage system[4]. Wang et al. evaluated the file and block
I/O performance and scalability of Ceph, using a commercial high-end storage
system[5]. Computer-system logs provide a glimpse into the states of a running
system, and system diagnostics research around logs never stopped[6].

3 Design and implement

3.1 Architecture of FSObserver

The FSObserver are designed to measure different aspects of performance in a
large-scale distributed file system by packets analysis. We designed a flexible
packet analyzer, which can capture related packets and save a little information
from the payload. The analyzers can be turned on/off by a controller. These
designs can get performance data without too much impact on the system. Fig.
1(a) shows the architecture of FSObserver. There are 3 kinds of components in
the FSObserver. The recorder processes can be turned on/off dynamically.

– Recorder
It captures related packets using libpcap5, which is a portable C++ library
for network traffic capture. When a recorder process captures a read request
packet, it analyzes the header of payload and outputs key information, such
as time, transaction id, data length. We measure the impact of the recorder
in several read/write scenarios. The performance impact is less than 5%.

– Controller
It can start/stop some observers according to the administrator’s input. The
FSObserver can be used flexibly for various purposes.

– Observer
This is a python program for analyzing the output of observers. It gets IOPS
by counting how many finished IO requests in a given period in the results.
In our prototype, we output the performance information into a text file
inside the nodes under test. Meanwhile, we run the observer on the same
nodes. The performance characteristic of the nodes including IOPS, through-
put, and latency can be calculated through one sequential scan of the text
file. In a large-scale system, we can use the mechanism similar to ganglia. As

4 http://www.ceph.com/performance/
5 http://www.tcpdump.org/



shown in Fig. 1(b), we divide nodes into different monitor group. The nodes
in one group save the raw performance data in a database like MySQL or
RRDtool.

Client 1
librbd

librados recorder

Client 2
librbd

librados recorder

Client n
librbd

librados recorder

MON

Monitor recorder

MDS

MDS recorder

OSD-1

OSD recorder

OSD-2

OSD recorder

OSD-n

OSD recorder

Admin

ObserverController

OSD-0

OSD recorder

Network

Components of fsobserver Activated Inactivated

(a) Components of FSObserver

Client 1

recorder

database

Client 1

recorder

insert

Observer

Client 1

recorder

MON

recorder

MDS

recorder

OSD-0

recorder

database

Observer

... ...

Web server

Client

Controller
Controller

,
(b) FSObserver in large-scale systems

Fig. 1. Architecture of FSObserver

3.2 Implement of FSObserver for Ceph

After capturing a related packet using libpcap, it extracts the necessary infor-
mation for performance measurement. Our main purpose is to get performance
data, so we only need to analyze the messages with tag equals to 0x07. Further,
we can only capture and analyze messages from a specific client.

The observer program analyzes the results from recorders. It can get IOPS,
throughput and latency data from the results. For example, IOPS is calculated
by counting the number of transactions finished in a given period. To analyze
the performance of a certain client, we only need to deploy a recorder on the
client. We can also get the same metric from records from all related OSD nodes
with the client. We put the implementation on the GitHub6.

4 Evaluation

We evaluate the accuracy and application of our tools. First, we compare the
test results of FSObserver and widely used benchmarks to show the accuracy
of our tools. Then, we measure the performance of a real user application to
demonstrate how to use FSObserver in a real environment. The test environment
comprised 10 commodity servers. 6 nodes work as Ceph servers, 4 nodes act as
Ceph clients. The release version of Ceph is 12.2.4 Luminous.

4.1 Block storage interface

We use fio to test the performance of block storage interface. In our environments,
we first test the performance use fio, then we lunch FSObserver and test the
performance with fio again. We get two performance data from fio, and one
performance data from FSObserver.

6 https://github.com/zhangxiao2000/fsobserver



There are 6 different workloads used in our test, including sequence read,
write, and mixed workloads and random read, write, and mixed workloads. For
each workload, we test performance with different block sizes from 4k to 128k.
Due to the page limitations, we only show the results of read and write. From
these figures, the results of fio are almost the same, while one is taken without
a recorder, the other was taken with FSObserver is working. The CPU and
memory used by FSObserver are also very small. According to our experiments,
it only used less than 0.3% CPU during the whole test.

4k 8k 16k 32k 64k 128k

fio 9888 9372 6738 3298 1727 846

fio-rec-on 9381 9306 6921 3504 1640 839

fsobserver 9376 9196 6884 3461 1641 839

0

2000

4000

6000

8000

10000

12000

IO
P

S 
ti

m
es

/s

(a) Sequence read

4k 8k 16k 32k 64k 128k

fio 321 334 315 258 131 107

fio-rec-on 345 327 303 272 130 106

fsobserver 342 325 300 273 130 105

0

50

100

150

200

250

300

350

400

IO
P

S 
ti

m
es

/s

(b) Sequence write

4k 8k 16k 32k 64k 128k

fio 3420 3028 2384 1833 1227 659

fio-rec-on 4798 3875 2393 1775 1225 664

fsobserver 4733 3851 2359 1763 1210 660

0

1000

2000

3000

4000

5000

6000

IO
P

S 
ti

m
es

/s

(c) Random read

4k 8k 16k 32k 64k 128k

fio 90 89 93 87 116 107

fio-rec-on 94 97 90 91 121 108

fsobserver 95 98 91 91 121 108

0

20

40

60

80

100

120

140

IO
P

S 
ti

m
es

/s

(d) Random write

Fig. 2. The IOPS measured by fio and FSObserver

4k 8k 16k 32k 64k 128k

fio 38.60 73.20 105.00 103.00 108.00 106.00

fio-rec-on 36.60 72.70 108.00 110.00 103.00 105.00

fsobserver 35.89 69.96 104.28 95.31 73.49 84.29

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Th
ro

u
gh

p
u

t 
M

B
/s

(a) Sequence read

4k 8k 16k 32k 64k 128k

fio 1.26 2.62 4.93 8.09 8.20 13.40

fio-rec-on 1.35 2.56 4.75 8.52 8.16 13.30

fsobserver 1.35 2.54 4.69 8.52 8.10 13.27

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Th
ro

u
gh

p
u

t 
M

B
/s

(b) Sequence write

4k 8k 16k 32k 64k 128k

fio 13.40 23.70 37.30 57.30 76.70 82.40

fio-rec-on 18.70 30.30 37.40 55.50 76.60 83.10

fsobserver 17.99 29.29 35.95 53.86 74.23 81.23

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Th
ro

u
gh

p
u

t 
M

B
/s

(c) Random read

4k 8k 16k 32k 64k 128k

fio 0.35 0.70 1.46 2.73 7.31 13.50

fio-rec-on 0.37 0.76 1.42 2.85 7.57 13.60

fsobserver 0.37 0.76 1.42 3.14 7.55 13.52

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Th
ro

u
gh

p
u

t 
M

B
/s

(d) Random write
Fig. 3. The throughput measured by fio and FSObserver

4k 8k 16k 32k 64k 128k

fio 892.24 1030.0 1430.2 3012.4 5867.9 12002.

fio-recorder-on 950.95 1075.2 1416.9 2976.1 5775.7 11908.

fsobserver 768.49 829.91 1094.4 1747.4 2954.9 7182.0

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

la
te
n
cy
(u
se
c)

(a) Sequence read

4k 8k 16k 32k 64k 128k

fio 591.74 589.66 590.50 609.68 625.75 665.65

fio-recorder-on 596.50 600.18 610.67 615.42 630.87 680.12

fsobserver 474.28 476.51 481.93 478.43 474.44 482.95

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

la
te
n
cy
(u
se
c)

(b) Random read

4k 8k 16k 32k 64k 128k

fio 27.24 28.45 31.11 35.01 73.97 92.34

fio-recorder-on 27.57 30.74 33.80 40.70 74.35 92.35

fsobserver 27.33 30.75 31.56 39.56 74.61 93.64

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

la
te
n
cy
(m

se
c)

(c) Sequence write

4k 8k 16k 32k 64k 128k

fio 91.87 93.35 89.21 97.74 90.92 94.10

fio-recorder-on 90.07 91.53 88.15 97.25 88.41 92.65

fsobserver 84.36 85.32 83.44 88.54 87.77 91.72

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00
la
te
n
cy
(m

se
c)

(d) Random write
Fig. 4. The latency measured by fio and FSObserver

4.2 Capture real workloads

In this part, we demonstrate how to get the I/O sequence of a real application.
The process of compiling a Linux kernel is a complex task. There are 67 thousand
files in the Linux kernel 4.16.4. During the compiling process, several compilers
read thousands of files and generate about 71 thousand new files. Fig.5 shows
the IO throughput per minutes during the compiling process. We can find that
during the compiling process, the write throughput is kept at a high level.

5 Conclusion

In this paper, we present a flexible performance monitoring tool for large-scale
distributed storage systems. We have implemented it for Ceph. The experiments



Fig. 5. Real workloads of compiling a Linux kernel

show that it can get coincident performance data with other widely used tools.
We compared the accuracy with wide adapted benchmarks and measure a per-
formance for a real application.

Acknowledgment

This work is supported by the NFS of China under Grant No.61472323 and
No.61502392 and the Ministry of Science and Technology of China, National
Key Research and Development Program (No.2018YFB1004401).

References

1. D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software diagnos-
ability via log enhancement,” ACM Transactions on Computer Systems (TOCS),
vol. 30, no. 1, p. 4, 2012.

2. Y. Zhao, Y. Cao, Y. Chen, M. Zhang, and A. Goyal, “Rake: Semantics assisted
network-based tracing framework,” IEEE Transactions on Network and Service
Management, vol. 10, no. 1, pp. 3–14, 2013.

3. M. Määttä and T. Räty, “Automatic model creation to support network monitor-
ing,” IEEE Access, vol. 2, pp. 142–152, 2014.

4. D. Gudu, M. Hardt, and A. Streit, “Evaluating the performance and scalability of
the ceph distributed storage system,” in Big Data (Big Data), 2014 IEEE Interna-
tional Conference on. IEEE, 2014, pp. 177–182.

5. F. Wang, M. Nelson, S. Oral, and Atchley, “Performance and scalability evaluation
of the ceph parallel file system,” in Proceedings of the 8th Parallel Data Storage
Workshop. ACM, 2013, pp. 14–19.

6. A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in log analysis,”
Communications of the ACM, vol. 55, no. 2, pp. 55–61, 2012.


