Abstract
A wide range of components of multimedia analytics systems relies on visual content that is used for supervised (e.g., classification) and unsupervised (e.g., clustering) machine learning methods. This content may contain privacy sensitive information, e.g., show faces of persons. In many cases it is just an inevitable side-effect that persons appear in the content, and the application may not require identification – a situation which we call “collateral privacy issues”. We propose de-identification of faces in images by using a generative adversarial network to generate new face images, and use them to replace faces in the original images. We demonstrate that face swapping does not impact the performance of visual descriptor matching and extraction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, A., Singh, R., Vatsa, M., Noore, A.: Swapped! digital face presentation attack detection via weighted local magnitude pattern. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 659–665. IEEE (2017)
Ahonen, T., Rahtu, E., Ojansivu, V., Heikkila, J.: Recognition of blurred faces using local phase quantization. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)
Badii, A., Einig, M., Piatrik, T., et al.: Overview of the mediaeval 2013 visual privacy task. In: MediaEval (2014)
Bergeron, C., Sidaty, N., Hamidouche, W., Boyadjis, B., Le Feuvre, J., Lim, Y.: Real-time selective encryption solution based on ROI for MPEG-a visual identity management AF. In: 2017 22nd International Conference on Digital Signal Processing (DSP), pp. 1–5, Aug 2017
Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P., Nayar, S.K.: Face swapping: automatically replacing faces in photographs. In: ACM Transactions on Graphics (TOG), vol. 27, p. 39. ACM (2008)
Evaluation framework for compact descriptors for video analysis - search and retrieval - version 2.0. Technical report ISO/IEC JTC1/SC29/WG11/N15729 (2015)
Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). Official Journal of the European Union, L119:1–88, May 2016
Hadid, A., Nishiyama, M., Sato, Y.: Recognition of blurred faces via facial deblurring combined with blur-tolerant descriptors. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 1160–1163. IEEE (2010)
King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)
Lander, K., Bruce, V., Hill, H.: Evaluating the effectiveness of pixelation and blurring on masking the identity of familiar faces. Appl. Cogn. Psychol. 15(1), 101–116 (2001)
Letournel, G., Bugeau, A., Ta, V.T., Domenger, J.P.: Face de-identification with expressions preservation. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4366–4370. IEEE (2015)
Lin, J., Duan, L.-Y., Huang, Y., Luo, S., Huang, T., Gao, W.: Rate-adaptive compact fisher codes for mobile visual search. IEEE Signal Process. Lett. 21(2), 195–198 (2014)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV) (2015)
Lou, Y., et al.: Compact deep invariant descriptors for video retrieval. In: Data Compression Conference (DCC), pp. 420–429, April 2017
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Mahajan, S., Chen, L.J., Tsai, T.C.: SwapItUP: a face swap application for privacy protection. In: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), pp. 46–50. IEEE (2017)
Meng, L., Sun, Z., Collado, O.T.: Efficient approach to de-identifying faces in videos. IET Sig. Process. 11(9), 1039–1045 (2017)
Nakashima, Y., Babaguchi, N., Fan, J.: Intended human object detection for automatically protecting privacy in mobile video surveillance. Multimed. Syst. 18(2), 157–173 (2012)
Natsume, R., Yatagawa, T., Morishima, S.: RSGAN: face swapping and editing using face and hair representation in latent spaces. arXiv preprint arXiv:1804.03447 (2018)
Newton, E.M., Sweeney, L., Malin, B.: Preserving privacy by de-identifying face images. IEEE Trans. Knowl. Data Eng. 17(2), 232–243 (2005)
Nirkin, Y., Masi, I., Tuan, A.T., Hassner, T., Medioni, G.: On face segmentation, face swapping, and face perception. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2018, pp. 98–105. IEEE (2018)
Nishiyama, M., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial deblur inference to improve recognition of blurred faces. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1115–1122. IEEE (2009)
Padilla-López, J.R., Chaaraoui, A.A., Flórez-Revuelta, F.: Visual privacy protection methods: a survey. Expert. Syst. Appl. 42(9), 4177–4195 (2015)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434 (2015)
Saini, M., Atrey, P.K., Mehrotra, S., Kankanhalli, M.: W3-privacy: understanding what, when, and where inference channels in multi-camera surveillance video. Multimed. Tools Appl. 68(1), 135–158 (2014)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)
Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Sig. Process. Lett. 23(10), 1499–1503 (2016)
Zhang, Y., Zheng, L., Thing, V.L.: Automated face swapping and its detection. In: 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP), pp. 15–19. IEEE (2017)
Acknowledgments
The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 761802, MARCONI (“Multimedia and Augmented Radio Creation: Online, iNteractive, Individual”, https://www.projectmarconi.eu).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bailer, W. (2019). Face Swapping for Solving Collateral Privacy Issues in Multimedia Analytics. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11295. Springer, Cham. https://doi.org/10.1007/978-3-030-05710-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-05710-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05709-1
Online ISBN: 978-3-030-05710-7
eBook Packages: Computer ScienceComputer Science (R0)