Skip to main content

3D ResNets for 3D Object Classification

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11295))

Included in the following conference series:

Abstract

During the last few years, deeper and deeper networks have been constantly proposed for addressing computer vision tasks. Residual Networks (ResNets) are the latest advancement in the field of deep learning that led to remarkable results in several image recognition and detection tasks. In this work, we modify two variants of the original ResNets, i.e. Wide Residual Networks (WRNs) and Residual of Residual Networks (RoRs), to work on 3D data and investigate for the first time, to our knowledge, their performance in the task of 3D object classification. We use a dataset containing volumetric representations of 3D models so as to fully exploit the underlying 3D information and present evidence that ‘3D ResNets’ constitute a valuable tool for classifying objects on 3D data as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brock, A., Lim, T., Ritchie, J., Weston, N.: Generative and discriminative voxel modeling with convolutional neural networks. CoRR abs/1608.04236 (2016). http://arxiv.org/abs/1608.04236

  2. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Conference (BMVC) (2014)

    Google Scholar 

  3. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  4. Gu, J., et al.: Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018). https://doi.org/10.1016/j.patcog.2017.10.013

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: IEEE International Conference on Computer Vision ICCV, pp. 1026–1034 (2015)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  8. Hegde, V., Zadeh, R.: FusionNet: 3D object classification using multiple data representations. CoRR abs/1607.05695 (2016).http://arxiv.org/abs/1607.05695

  9. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  10. Ioannidou, A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I.: Deep learning advances in computer vision with 3D data: a survey. ACM Comput. Surv. 50(2), 201–2038 (2017). https://doi.org/10.1145/3042064

    Article  Google Scholar 

  11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network trainingby reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning (ICML), pp. 448–456 (2015).http://jmlr.org/proceedings/papers/v37/ioffe15.html

  12. Johns, E., Leutenegger, S., Davison, A.: Pairwise decomposition of image sequences for active multi-view recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3813–3822 (2016)

    Google Scholar 

  13. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

  14. Klokov, R., Lempitsky, V.: Escape from cells: deep Kd-networks for the recognition of 3D point cloud models. CoRR abs/1704.01222 (2017). http://arxiv.org/abs/1704.01222

  15. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network forreal-time object recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928 (2015)

    Google Scholar 

  16. Moniz, J., Pal, C.: Convolutional residual memory networks. CoRR abs/1606.05262 (2016). http://arxiv.org/abs/1606.05262

  17. Qi, C., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.: Volumetric and multi-view CNNs for object classification on 3D data. CoRR abs/1604.03265 (2016). http://arxiv.org/abs/1604.03265

  18. Sedaghat, N., Zolfaghari, M., Brox, T.: Orientation-boosted voxel nets for 3D object recognition. CoRR abs/1604.03351 (2016). http://arxiv.org/abs/1604.03351

  19. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Srivastava, R., Greff, K., Schmidhuber, J.: Highway networks. CoRR abs/1505.00387 (2015). http://arxiv.org/abs/1505.00387

  21. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 945–953 (2015)

    Google Scholar 

  22. Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: generalizing residual architectures. CoRR abs/1603.08029 (2016).http://arxiv.org/abs/1603.08029

  23. Theano Development Team: Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints abs/1605.02688, May 2016. http://arxiv.org/abs/1605.02688

  24. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015

    Google Scholar 

  25. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)

    Google Scholar 

  26. Zhang, K., Sun, M., Han, X., Yuan, X., Guo, L., Liu, T.: Residual networks of residual networks: multilevel residual networks. IEEE Trans. Circ. Syst. Video Technol. PP(99), 1 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union H2020 Horizon Programme (2014–2020) under grant agreement 665066, project DigiArt (The Internet Of Historical Things And Building New 3D Cultural Worlds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisavet Chatzilari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ioannidou, A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I. (2019). 3D ResNets for 3D Object Classification. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11295. Springer, Cham. https://doi.org/10.1007/978-3-030-05710-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05710-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05709-1

  • Online ISBN: 978-3-030-05710-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics