Skip to main content

Underwater-GAN: Underwater Image Restoration via Conditional Generative Adversarial Network

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11188))

Abstract

Underwater image restoration is still a challenging task until now, because underwater images are degenerated due to the complex underwater imaging environment and poor light condition. The image degeneration includes color distortion, low contrast, and blur. In this paper, we propose Underwater-GAN, a conditional generative adversarial network for underwater image restoration. In Underwater-GAN, we use Wasserstein GAN with gradient penalty term as the backbone network. We design the loss function as the sum of the loss of generative adversarial network and the perceptual loss. In the discriminator of Underwater-GAN, we use a convolution patchGAN classifier to learn a structural loss instead of the image-level loss or pixel-wise loss. Moreover, we construct an underwater image dataset by simulating to generate underwater images according to the underwater imaging model. We train our model with these simulated underwater dataset. The results of our experiments show that the proposed method produces better visual qualitative and quantitative indicators than existing methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hummel, R.: Image enhancement by histogram transformation. Comput. Graph. Image Process. 6, 184–195 (1977)

    Article  Google Scholar 

  2. Liu, Y.C., Chan, W.H., Chen, Y.Q.: Automatic white balance for digital still camera. IEEE Trans. Consum. Electron. 41, 460–466 (1995)

    Article  Google Scholar 

  3. Henke, B., Vahl, M., Zhou, Z.: Removing color cast of underwater images through non-constant color constancy hypothesis. In: IEEE International Symposium on Image and Signal Processing and Analysis (2013)

    Google Scholar 

  4. Galdran, A., Pardo, D., et al.: Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. (JVCIR) 26, 132–145 (2014)

    Article  Google Scholar 

  5. Li, C., Guo, J., Pang, Y., Chen, S., Wang, J.: Single underwater image restoration by blue-green channels dehazing and red channel correction. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016)

    Google Scholar 

  6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Conference on Neural Information Processing Systems (NIPS) (2014)

    Google Scholar 

  8. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv: 1411.1784

  9. Ledig, C., Theis, L., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  10. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 33, 2341–2353 (2011)

    Article  Google Scholar 

  11. Jaffe, J.S.: Computer modeling and the design of optimal underwater imaging systems. IEEE J. Ocean. Eng. 15, 101–111 (1990)

    Article  Google Scholar 

  12. Koschmieder, H.: Theorie der horizontalen Sichtweite. In: Beitrage zur Physik der freien. Atmosphare (1924)

    Google Scholar 

  13. Li, J., Skinner, K.A., et al.: WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. arXiv: 1701.07875

  14. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein GANs. arXiv: 1704.00028

  15. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  16. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)

    Google Scholar 

  17. Johnson, J., Alahi, A., Li, F.: Perceptual losses for real-time style transfer and super-resolution. In: European Conference on Computer Vision (ECCV) (2016)

    Google Scholar 

  18. Kupyn, O., Budzan, V., Mykhailych, M.: DeblurGAN: blind motion deblurring using conditional adversarial networks. arXiv:1711.07064

  19. Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley Publishing Company, Boston (1992). Chapter 4

    Google Scholar 

  20. Johnson-Roberson, M., Bryson, M., et al.: High-resolution underwater robotic vision-based mapping and 3D reconstruction for archaeology. Field Robot. 34, 625–643 (2016)

    Article  Google Scholar 

  21. Bekaert, P., Haber, T., et al.: Enhancing underwater images and videos by fusion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  22. Fabbri, C., Islam, M.J., et al.: Enhancing underwater imagery using generative adversarial networks. In: IEEE Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(11), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyun Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, X., Qu, Y., Hong, M. (2019). Underwater-GAN: Underwater Image Restoration via Conditional Generative Adversarial Network. In: Zhang, Z., Suter, D., Tian, Y., Branzan Albu, A., Sidère, N., Jair Escalante, H. (eds) Pattern Recognition and Information Forensics. ICPR 2018. Lecture Notes in Computer Science(), vol 11188. Springer, Cham. https://doi.org/10.1007/978-3-030-05792-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05792-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05791-6

  • Online ISBN: 978-3-030-05792-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics