Abstract
We present a parallelization strategy for our novel iterative method to simulate elastic waves in 3D land inhomogeneous isotropic media via MPI and OpenMP. The unique features of the solver are the preconditioner developed to assure fast convergence of the Krylov-type iteration method at low time frequencies and the way to calculate how the forward modeling operator acts on a vector. We successfully benchmark the accuracy of our solver against the exact solution and compare it to another iterative solver. The quality of the parallelization is justified by weak and strong scaling analysis. Our modification allows simulation in big models including a modified 2.5D Marmousi model comprising 90 million cells.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albanese, C., Gilblom, K.: This oil major has a supercomputer the size of a soccer field. Bloomberg, 18 January 2018
Aminzadeh, F., Brac, J., Kuntz, T.: 3-D Salt and Overthrust Models. SEG/EAGE Modelling Series, no. 1. SEG Book Series, Tulsa, Oklahoma (1997)
Aki, K., Richards, P.G.: Quantitative Seismology, Theory and Methods, vol. 1. W.H. Freeman and Co., San Francisco (1980)
Belonosov, M.A., Kostov, C., Reshetova, G.V., Soloviev, S.A., Tcheverda, V.A.: Parallel numerical simulation of seismic waves propagation with intel math kernel library. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 153–167. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36803-5_11
Belonosov, M., Dmitriev, M., Kostin, V., Neklyudov, D., Tcheverda, V.: An iterative solver for the 3D Helmholtz equation. J. Comput. Phys. 345, 330–344 (2017)
Berenger, J.P.: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127, 363–379 (1996)
Darbas, M., Louer, F.: Analytic preconditioners for the iterative solution of elastic scattering problems. HAL, hal-00839653, pp. 1–32 (2013)
Erlangga, Y.A., Nabben, R.: On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. Electron. Trans. Numer. Anal. 31, 403–424 (2008)
Etienne, V., Tonellot, T., Thierry, P., Berthoumieux, V., Andreolli, C.: Optimization of the seismic modeling with the time-domain finite-difference method. In: 84th Annual International Meeting, SEG, Expanded Abstracts, pp. 3536–3540 (2014)
Intel, 2018, Intel®Math Kernel Library (Intel®MKL). https://software.intel.com/en-us/intel-mkl
Khajdukov, V.G., et al.: Modelling of seismic waves propagation for 2D media (direct and inverse problems). In: Malyshkin, V. (ed.) PaCT 1997. LNCS, vol. 1277, pp. 350–357. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63371-5_36
Kostin, V., Lisitsa, V., Reshetova, G., Tcheverda, V.: Local time-space mesh refinement for simulation of elastic wave propagation in multi-scale media. J. Comput. Phys. 281, 669–689 (2015)
Kostin, V., Neklyudov, D., Tcheverda, V., Belonosov, M., Dmitriev, M.: 3D elastic frequency-domain iterative solver for full-waveform inversion. In: 86th Annual International Meeting, SEG, Expanded Abstracts, pp. 3825–3829 (2016)
Kostin, V., Solovyev, S., Liu, H., Bakulin, A.: HSS cluster-based direct solver for acoustic wave equation. In: 87th Annual International Meeting, SEG, Expanded Abstracts, pp. 4017–4021 (2017)
Li, Y., Metivier, L., Brossier, R., Han, B., Virieux, J.: 2D and 3D frequency-domain elastic wave modeling in complex media with a parallel iterative solver. Geophysics 80, T101–T118 (2015)
Lisitsa, V., Tcheverda, V., Botter, C.: Combination of discontinuous Galerkin method with finite differences for simulation of elastic wave. J. Comput. Phys. 311, 142–157 (2016)
Operto, S., Virieux, J., Amestoy, P., L’Excellent, J., Giraud, L., Hadj, H.: 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: a feasibility study. Geophysics 72, SM195–SM211 (2007)
Pissarenko, D., Reshetova, G., Tcheverda, V.: 3D finite-difference synthetic acoustic log in cylindrical coordinates: parallel implementation. J. Comput. Appl. Math. 234(6), 1766–1772 (2010)
Pratt, R.G.: Seismic waveform inversion in the frequency domain, Part 1: theory and verification in a physical scale model. Geophysics 64, 888–901 (1999)
Rizzuti, G., Mulder, W.A.: A multigrid-based iterative solver for the frequency-domain elastic wave equation. In: 77th EAGE Conference and Exhibition, Expanded Abstracts, pp. 1–4 (2015)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
Sirgue, L., Etgen, J., Albertin, U., Brandsberg-Dahl, S.: System and method for 3D frequency domain waveform inversion based on 3D time-domain forward modeling. U. S. Patent, 11/756,384 (2007)
Sonneveld, P., van Gijzen, M.B.: IDR(s): a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations. SIAM J. Sci. Comput. 31, 1035–1062 (2008)
Symes, W.W.: Migration velocity analysis and waveform inversion. Geophys. Prospect. 56(6), 765–790 (2008)
Van Der Vorst, H.A.: BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)
Virieux, J.: Seismic wave modeling for seismic imaging. Lead. Edge 28, 538–544 (2009)
Wang, S.V., de Hoop, M., Xia, J., Li, X.S.: Massively parallel structured multifrontal solver for time-harmonic elastic waves in 3-D anisotropic media. Geophys. J. Int. 191, 346–366 (2012)
Acknowledgments
We are grateful to Vincent Etienne and Michael Jervis for reviewing of our manuscript. Special thanks to Maxim Dmitriev for useful discussions and advice on this topic. Two of the authors (Victor Kostin and Vladimir Tcheverda) have been sponsored by the Russian Science Foundation grant 17-17-01128.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Belonosov, M., Cheverda, V., Kostin, V., Neklyudov, D. (2019). Parallelization Strategy for Wavefield Simulation with an Elastic Iterative Solver. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-05807-4_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-05807-4_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05806-7
Online ISBN: 978-3-030-05807-4
eBook Packages: Computer ScienceComputer Science (R0)