Skip to main content

Parallelization Strategy for Wavefield Simulation with an Elastic Iterative Solver

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 965))

Included in the following conference series:

  • 641 Accesses

Abstract

We present a parallelization strategy for our novel iterative method to simulate elastic waves in 3D land inhomogeneous isotropic media via MPI and OpenMP. The unique features of the solver are the preconditioner developed to assure fast convergence of the Krylov-type iteration method at low time frequencies and the way to calculate how the forward modeling operator acts on a vector. We successfully benchmark the accuracy of our solver against the exact solution and compare it to another iterative solver. The quality of the parallelization is justified by weak and strong scaling analysis. Our modification allows simulation in big models including a modified 2.5D Marmousi model comprising 90 million cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albanese, C., Gilblom, K.: This oil major has a supercomputer the size of a soccer field. Bloomberg, 18 January 2018

    Google Scholar 

  2. Aminzadeh, F., Brac, J., Kuntz, T.: 3-D Salt and Overthrust Models. SEG/EAGE Modelling Series, no. 1. SEG Book Series, Tulsa, Oklahoma (1997)

    Google Scholar 

  3. Aki, K., Richards, P.G.: Quantitative Seismology, Theory and Methods, vol. 1. W.H. Freeman and Co., San Francisco (1980)

    Google Scholar 

  4. Belonosov, M.A., Kostov, C., Reshetova, G.V., Soloviev, S.A., Tcheverda, V.A.: Parallel numerical simulation of seismic waves propagation with intel math kernel library. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 153–167. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36803-5_11

    Chapter  Google Scholar 

  5. Belonosov, M., Dmitriev, M., Kostin, V., Neklyudov, D., Tcheverda, V.: An iterative solver for the 3D Helmholtz equation. J. Comput. Phys. 345, 330–344 (2017)

    Article  MathSciNet  Google Scholar 

  6. Berenger, J.P.: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127, 363–379 (1996)

    Article  MathSciNet  Google Scholar 

  7. Darbas, M., Louer, F.: Analytic preconditioners for the iterative solution of elastic scattering problems. HAL, hal-00839653, pp. 1–32 (2013)

    Google Scholar 

  8. Erlangga, Y.A., Nabben, R.: On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. Electron. Trans. Numer. Anal. 31, 403–424 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Etienne, V., Tonellot, T., Thierry, P., Berthoumieux, V., Andreolli, C.: Optimization of the seismic modeling with the time-domain finite-difference method. In: 84th Annual International Meeting, SEG, Expanded Abstracts, pp. 3536–3540 (2014)

    Google Scholar 

  10. Intel, 2018, Intel®Math Kernel Library (Intel®MKL). https://software.intel.com/en-us/intel-mkl

  11. Khajdukov, V.G., et al.: Modelling of seismic waves propagation for 2D media (direct and inverse problems). In: Malyshkin, V. (ed.) PaCT 1997. LNCS, vol. 1277, pp. 350–357. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63371-5_36

    Chapter  Google Scholar 

  12. Kostin, V., Lisitsa, V., Reshetova, G., Tcheverda, V.: Local time-space mesh refinement for simulation of elastic wave propagation in multi-scale media. J. Comput. Phys. 281, 669–689 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kostin, V., Neklyudov, D., Tcheverda, V., Belonosov, M., Dmitriev, M.: 3D elastic frequency-domain iterative solver for full-waveform inversion. In: 86th Annual International Meeting, SEG, Expanded Abstracts, pp. 3825–3829 (2016)

    Google Scholar 

  14. Kostin, V., Solovyev, S., Liu, H., Bakulin, A.: HSS cluster-based direct solver for acoustic wave equation. In: 87th Annual International Meeting, SEG, Expanded Abstracts, pp. 4017–4021 (2017)

    Google Scholar 

  15. Li, Y., Metivier, L., Brossier, R., Han, B., Virieux, J.: 2D and 3D frequency-domain elastic wave modeling in complex media with a parallel iterative solver. Geophysics 80, T101–T118 (2015)

    Article  Google Scholar 

  16. Lisitsa, V., Tcheverda, V., Botter, C.: Combination of discontinuous Galerkin method with finite differences for simulation of elastic wave. J. Comput. Phys. 311, 142–157 (2016)

    Article  MathSciNet  Google Scholar 

  17. Operto, S., Virieux, J., Amestoy, P., L’Excellent, J., Giraud, L., Hadj, H.: 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: a feasibility study. Geophysics 72, SM195–SM211 (2007)

    Article  Google Scholar 

  18. Pissarenko, D., Reshetova, G., Tcheverda, V.: 3D finite-difference synthetic acoustic log in cylindrical coordinates: parallel implementation. J. Comput. Appl. Math. 234(6), 1766–1772 (2010)

    Article  MathSciNet  Google Scholar 

  19. Pratt, R.G.: Seismic waveform inversion in the frequency domain, Part 1: theory and verification in a physical scale model. Geophysics 64, 888–901 (1999)

    Article  Google Scholar 

  20. Rizzuti, G., Mulder, W.A.: A multigrid-based iterative solver for the frequency-domain elastic wave equation. In: 77th EAGE Conference and Exhibition, Expanded Abstracts, pp. 1–4 (2015)

    Google Scholar 

  21. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  22. Sirgue, L., Etgen, J., Albertin, U., Brandsberg-Dahl, S.: System and method for 3D frequency domain waveform inversion based on 3D time-domain forward modeling. U. S. Patent, 11/756,384 (2007)

    Google Scholar 

  23. Sonneveld, P., van Gijzen, M.B.: IDR(s): a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations. SIAM J. Sci. Comput. 31, 1035–1062 (2008)

    Article  MathSciNet  Google Scholar 

  24. Symes, W.W.: Migration velocity analysis and waveform inversion. Geophys. Prospect. 56(6), 765–790 (2008)

    Article  Google Scholar 

  25. Van Der Vorst, H.A.: BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  Google Scholar 

  26. Virieux, J.: Seismic wave modeling for seismic imaging. Lead. Edge 28, 538–544 (2009)

    Article  Google Scholar 

  27. Wang, S.V., de Hoop, M., Xia, J., Li, X.S.: Massively parallel structured multifrontal solver for time-harmonic elastic waves in 3-D anisotropic media. Geophys. J. Int. 191, 346–366 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Vincent Etienne and Michael Jervis for reviewing of our manuscript. Special thanks to Maxim Dmitriev for useful discussions and advice on this topic. Two of the authors (Victor Kostin and Vladimir Tcheverda) have been sponsored by the Russian Science Foundation grant 17-17-01128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Cheverda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belonosov, M., Cheverda, V., Kostin, V., Neklyudov, D. (2019). Parallelization Strategy for Wavefield Simulation with an Elastic Iterative Solver. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-05807-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05807-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05806-7

  • Online ISBN: 978-3-030-05807-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics