Skip to main content

Teleoperation of a Multi-robot System with Adjustable Dynamic Parameters

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 9))

  • 1283 Accesses

Abstract

In this paper we propose a new approach for the teleoperation of a multi-robot system, in which we allow the user to teleoperate the group of robots as if it were a desired mass subject to a given damping coefficient. In the proposed method, we allow the user to exploit the teleoperation device for both controlling the position of the robots and for defining the setpoint for the dynamical parameters. This is achieved by means of a local scaling of the coupling actions among the robots, performed in a passivity-preserving manner. Experiments on a real robotic setup are performed to corroborate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is worth remarking that, even thought the considered dynamic model is very simple, it is often exploited for modeling real robotic systems (e.g. by means of feedback linearization [12]).

References

  1. Arrichiello, F., Marino, A., Pierri, F.: A decentralized fault tolerant control strategy for multi-robot systems. IFAC Proc. Vol. 47(3), 6642–6647 (2014)

    Article  Google Scholar 

  2. Cheung, Y., Chung, J.S.: Cooperative control of a multi-arm system using semi-autonomous telemanipulation and adaptive impedance. In: 2009 International Conference on Advanced Robotics, pp. 1–7, June 2009

    Google Scholar 

  3. DeCastro, J.A., Alonso-Mora, J., Raman, V., Rus, D., Kress-Gazit, H.: Collision-free reactive mission and motion planning for multi-robot systems. In: Robotics Research, pp. 459–476. Springer (2018)

    Google Scholar 

  4. Ferraguti, F., Preda, N., Manurung, A., Bonfé, M., Lambercy, O., Gassert, R., Muradore, R., Fiorini, P., Secchi, C.: An energy tank-based interactive control architecture for autonomous and teleoperated robotic surgery. IEEE Trans. Robot. 31(5), 1073–1088 (2015). Oct

    Article  Google Scholar 

  5. Franchi, A., Secchi, C., Ryll, M., Bülthoff, H.H., Robuffo Giordano, P.: Shared control: balancing autonomy and human assistance with a group of quadrotor uavs. IEEE Robot. Autom. Mag. 19(3), 57–68 (2012). Sept

    Article  Google Scholar 

  6. Franchi, A., Secchi, C., Son, H.I., Bülthoff, H.H., Robuffo Giordano, P.: Bilateral teleoperation of groups of mobile robots with time-varying topology. IEEE Trans. Robot. 28(5), 1019–1033 (2012). Oct

    Article  Google Scholar 

  7. Glotfelter, P., Cortés, J., Egerstedt, M.: Nonsmooth barrier functions with applications to multi-robot systems. IEEE Control Syst. Lett. 1(2), 310–315 (2017)

    Article  Google Scholar 

  8. Lee, D., Franchi, A., Son, H.I., Ha, C., Bülthoff, H.H., Robuffo Giordano, P.: Semiautonomous haptic teleoperation control architecture of multiple unmanned aerial vehicles. IEEE/ASME Trans. Mechatron. 18(4), 1334–1345 (2013)

    Article  Google Scholar 

  9. Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the 40th IEEE Conference on Decision and Control(CDC), vol. 3, pp. 2968–2973. IEEE (2001)

    Google Scholar 

  10. Michael, N., Schwager, M., Kumar, V., Rus, D.: An experimental study of time scales and stability in networked multi-robot systems. In: Experimental Robotics, pp. 631–643. Springer (2014)

    Google Scholar 

  11. Mulder, M., Abbink, D.A., Carlson, T.: Introduction to the special issue on shared control: applications. J. Hum.-Robot Interact. 4(3), 1–3 (2015)

    Article  Google Scholar 

  12. Oriolo, G., De Luca, A., Vendittelli, M.: Wmr control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Trans. Control Syst. Technol. 10(6), 835–852 (2002)

    Article  Google Scholar 

  13. Palafox, O., Spong, M.: Bilateral teleoperation of a formation of nonholonomic mobile robots under constant time delay. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2821–2826, Oct 2009

    Google Scholar 

  14. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA workshop on open source software, vol. 3, p. 5. Kobe (2009)

    Google Scholar 

  15. Rodríguez-Seda, E.J., Troy, J.J., Erignac, C.A., Murray, P., Stipanović, D.M., Spong, M.W.: Bilateral teleoperation of multiple mobile agents: Coordinated motion and collision avoidance. IEEE Trans. Conttrol Syst. Technol. 18(4), 984–992 (2010)

    Article  Google Scholar 

  16. Sabattini, L., Secchi, C., Capelli, B., Fantuzzi, C.: Passivity preserving force scaling for enhanced teleoperation of multi-robot systems. IEEE Robot. Autom. Lett. 3(3), 1925–1932 (2018)

    Article  Google Scholar 

  17. Sabattini, L., Secchi, C., Fantuzzi, C.: Arbitrarily shaped formations of mobile robots: artificial potential fields and coordinate transformation. Auton. Robot. (Springer) 30(4), 385–397 (2011)

    Article  Google Scholar 

  18. Sabattini, L., Secchi, C., Fantuzzi, C.: Achieving the desired dynamic behavior in multi-robot systems interacting with the environment. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore, May 2017

    Google Scholar 

  19. Secchi, C., Sabattini, L., Fantuzzi, C.: Conducting multi-robot systems: Gestures for the passive teleoperation of multiple slaves. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2803–2808, Sept 2015

    Google Scholar 

  20. Secchi, C., Stramigioli, S., Fantuzzi, C.: Position drift compensation in port-hamiltonian based telemanipulation. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4211–4216, Oct 2006

    Google Scholar 

  21. Secchi, C., Stramigioli, S.: Fantuzzi, C.: Control of interactive robotic interfaces: A port-Hamiltonian approach, vol. 29. Springer Science & Business Media (2007)

    Google Scholar 

  22. Villani, V., Sabattini, L., Secchi, C., Fantuzzi, C.: Natural interaction based on affective robotics for multi-robot systems. In: Proceedings of the IEEE International Symposium on Multi-Robot and Multi-Agent Systems (MRS), pp. 56–62. Los Angeles, CA, USA, Dec 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Sabattini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sabattini, L., Fantuzzi, C., Secchi, C. (2019). Teleoperation of a Multi-robot System with Adjustable Dynamic Parameters. In: Correll, N., Schwager, M., Otte, M. (eds) Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-05816-6_11

Download citation

Publish with us

Policies and ethics