Skip to main content

Trust-Based Information Propagation on Multi-robot Teams in Noisy Low-Communication Environments

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 9))

  • 1249 Accesses

Abstract

One of the challenging requirements of large multi-robot systems is scalable communication methods that are robust to noisy low-communication environments. On a multi-hop, wireless sensor network, it may be desirable for a node to issue a system-wide alert on detection of an event of interest. However, if there is a high false-positive rate, then system-wide false alarms may frequently occur. Giant honeybees (Apis dorsata) generate large-scale spiral waves triggered by the presence of a threat. Studies show that the initial seed of the waves and the re-transmission behavior are non-trivial and thus may be specially tuned for this low-communication scenario. Motivated by these adaptive patterns in giant honeybees, we develop a distributed approach for sharing awareness of critical events that is able to damp the propagation of false-alarm signals. We validate the algorithm’s performance for a WSN detecting a hostile UAV in the SCRIMMAGE simulation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akdere, M., Bilgin, C.C., Gerdaneri, O., Korpeoglu, I., Ulusoy, Ö., Cetintemel, U.: A comparison of epidemic algorithms in wireless sensor networks. Comput. Commun. 29(13–14), 2450–2457 (2006)

    Article  Google Scholar 

  2. Al-Bahadili, H.: Trust determination in wireless ad hoc networks. In: Handbook of Research on Threat Detection and Countermeasures in Network Security, pp. 330–348. IGI Global (2015)

    Google Scholar 

  3. Altman, E., Kherani, A.A., Michiardi, P., Molva, R.: Non-cooperative forwarding in ad-hoc networks. In: International Conference on Research in Networking. pp. 486–498. Springer (2005)

    Google Scholar 

  4. Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. (TISSEC) 10(4), 1 (2008)

    Article  Google Scholar 

  5. DeMarco, K., Squires, E., Day, M., Pippin, C.: Simulating collaborative robots in a massive multi-agent game environment (scrimmage). In: International Symposium on Distributed Autonomous Robotic Systems (2018)

    Google Scholar 

  6. Farkas, I., Helbing, D., Vicsek, T.: Social behaviour: Mexican waves in an excitable medium. Nature 419(6903), 131–132 (2002)

    Article  Google Scholar 

  7. Gonçalves, S., Abramson, G., Gomes, M.F.: Oscillations in SIRS model with distributed delays. Eur. Phys. J. B 81(3), 363 (2011)

    Article  Google Scholar 

  8. Kastberger, G., Schmelzer, E., Kranner, I.: Social waves in giant honeybees repel hornets. PLoS ONE 3(9), e3141 (2008)

    Article  Google Scholar 

  9. Kastberger, G., Weihmann, F., Hoetzl, T.: Complex social waves of giant honeybees provoked by a dummy wasp support the special-agent hypothesis. Commun. Integr. Biol. 3(2), 179–180 (2010)

    Article  Google Scholar 

  10. Kastberger, G., Weihmann, F., Hoetzl, T., Weiss, S.E., Maurer, M., Kranner, I.: How to join a wave: decision-making processes in shimmering behavior of giant honeybees (Apis dorsata). PLoS ONE 7(5), e36736 (2012)

    Article  Google Scholar 

  11. Kastberger, G., Weihmann, F., Zierler, M., Hötzl, T.: Giant honeybees (Apis dorsata) mob wasps away from the nest by directed visual patterns. Naturwissenschaften 101(11), 861–873 (2014)

    Article  Google Scholar 

  12. Li, W., Parker, J., Joshi, A.: Security through collaboration and trust in MANETs. Mob. Netw. Appl. 17(3), 342–352 (2012)

    Article  Google Scholar 

  13. Pippin, C., Christensen, H.: Trust modeling in multi-robot patrolling. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 59–66. IEEE (2014)

    Google Scholar 

  14. Pippin, C.E.: Trust and reputation for formation and evolution of multi-robot teams (Nov 2013). https://smartech.gatech.edu/handle/1853/50376?show=full

  15. Romman, A.A., Al-Bahadili, H.: Performance analysis of the neighbor weight trust determination algorithm in MANETs

    Google Scholar 

  16. Schmelzer, E., Kastberger, G.: ‘Special agents’ trigger social waves in giant honeybees (Apis dorsata). Naturwissenschaften 96(12), 1431–1441 (2009)

    Article  Google Scholar 

  17. Seeley, T.D., Seeley, R.H., Akratanakul, P.: Colony defense strategies of the honeybees in Thailand. Ecol. Monogr. 52(1), 43–63 (1982)

    Article  Google Scholar 

  18. Shakya, R.K.: Modified si epidemic model for combating virus spread in spatially correlated wireless sensor networks. arXiv:1801.04744 (2018)

  19. Tang, S., Mark, B.L.: Analysis of virus spread in wireless sensor networks: an epidemic model. In: 7th International Workshop on Design of Reliable Communication Networks, 2009 (DRCN 2009), pp. 86–91. IEEE (2009)

    Google Scholar 

  20. UmaRani, V., Sundaram, K.S., Jayashree, D.: Enhanced beta trust model in wireless sensor networks. In: 2016 International Conference on Information Communication and Embedded Systems (ICICES), pp. 1–5. IEEE (2016)

    Google Scholar 

  21. van Ballegooijen, W.M., Boerlijst, M.C.: Emergent trade-offs and selection for outbreak frequency in spatial epidemics. Proc. Nat. Acad. Sci. 101(52), 18246–18250 (2004)

    Article  Google Scholar 

  22. Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of 22nd International Symposium on Reliable Distributed Systems, 2003, pp. 25–34. IEEE (2003)

    Google Scholar 

  23. Welch, J.L., Walter, J.E.: Link reversal algorithms. Synth. Lect. Distrib. Comput. Theory 2(3), 1–103 (2011)

    Article  Google Scholar 

  24. Zawaideh, F., Salamah, M., Al-Bahadili, H.: A fair trust-based malicious node detection and isolation scheme for WSNs. In: 2017 2nd International Conference on the Applications of Information Technology in Developing Renewable Energy Processes Systems (IT-DREPS), pp. 1–6, Dec 2017

    Google Scholar 

Download references

Acknowledgements

This work was supported by DARPA under the Bio-Inspired Swarming seedling project, contract FA8651-17-F-1013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Bowers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bowers, K., Strickland, L., Cooke, G., Pippin, C., Pavlic, T.P. (2019). Trust-Based Information Propagation on Multi-robot Teams in Noisy Low-Communication Environments. In: Correll, N., Schwager, M., Otte, M. (eds) Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-05816-6_17

Download citation

Publish with us

Policies and ethics