Skip to main content

Simulating Collaborative Robots in a Massive Multi-agent Game Environment (SCRIMMAGE)

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 9))

Abstract

Testing mobile robotic systems in the field is a costly and risky task. Unfortunately, there is a gap between the existing simulation capabilities and those required to simulate large numbers of aerial vehicles. Many multi-agent robotics simulators have been restricted to the 2D plane, which limits their usefulness for aerial robotic platforms. While high-fidelity 3D robotics simulators exist, simulating large numbers of agents in these simulators can result in slower-than-real-time performance. SCRIMMAGE provides a 3D robotics environment that can simulate varying levels of collision detection, sensor modeling, communications modeling, and motion modeling fidelity due to its flexible plugin interface. This allows a robotics researcher to simulate hundreds of aircraft with low-fidelity motion models or tens of aircraft with high-fidelity motion models on single computer. SCRIMMAGE provides tools for batch simulation runs, varying initial conditions, and deployment to a cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The SCRIMMAGE source code is publicly available at https://github.com/gtri/scrimmage.

  2. 2.

    The SCRIMMAGE website is located at http://www.scrimmagesim.org.

References

  1. Arkin, R.: Motor schema based navigation for a mobile robot: an approach to programming by behavior. In: 1987 IEEE International Conference on Robotics and Automation. Proceedings, vol. 4, pp. 264–271. IEEE (1987)

    Google Scholar 

  2. Bailey, M., Gebis, K., Zefran, M.: Simulation of Closed Kinematic Chains in Realistic Environments Using Gazebo. Springer, Cham (2016)

    Google Scholar 

  3. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The r*-tree: an efficient and robust access method for points and rectangles. In: ACM Sigmod Record, vol. 19, pp. 322–331. ACM (1990)

    Article  Google Scholar 

  4. Benjamin, M.R., Leonard, J.J., Schmidt, H., Newman, P.M.: An overview of moos-ivp and a brief users guide to the ivp helm autonomy software (2009)

    Google Scholar 

  5. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: OpenAI gym. arXiv preprint arXiv:1606.01540 (2016)

  6. Collier, N.: Repast: an extensible framework for agent simulation. Univ. Chic. Soc. Sci. Res. 36, 2003 (2003)

    Google Scholar 

  7. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  8. Forrester, A., Keane, A., et al.: Engineering Design via Surrogate Modelling: A Practical Guide. Wiley (2008)

    Google Scholar 

  9. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th international conference on advanced robotics, vol. 1, pp. 317–323 (2003)

    Google Scholar 

  10. Isaacs, R.: Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization, vol. 1. Dover Publications, Inc. (1965)

    Google Scholar 

  11. Jakob, W., Rhinelander, J., Moldovan, D.: pybind11—seamless operability between c++11 and python (2017). https://github.com/pybind/pybind11

  12. Kiran, M., Richmond, P., Holcombe, M., Chin, L.S., Worth, D., Greenough, C.: Flame: simulating large populations of agents on parallel hardware architectures. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 1633–1636. International Foundation for Autonomous Agents and Multiagent Systems (2010)

    Google Scholar 

  13. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings, vol. 3, pp. 2149–2154. IEEE (2004)

    Google Scholar 

  14. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multiagent simulation environment. Simulation 81(7), 517–527 (2005)

    Article  Google Scholar 

  15. Martinez, J.M., Collette, Y., Baudin, M., Christopoulou, M., Baudin, M., et al.: pyDOE: the experimental design package for Python (2009–). https://pythonhosted.org/pyDOE/. Accessed 07 Sept 2017

  16. Newman, P., Moos, A.: A mission oriented operating suite. Technical Report OE2007-07. MIT Department of Ocean Engineering (2003)

    Google Scholar 

  17. Nishimura, S.I., Ikegami, T.: Emergence of collective strategies in a prey-predator game model. Artif. Life 3(4), 243–260 (1997)

    Article  Google Scholar 

  18. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., et al.: ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics, pp. 5027–5034. IEEE (2011)

    Google Scholar 

  19. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5. Kobe (2009)

    Google Scholar 

  20. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  21. Rohmer, E., Singh, S.P., Freese, M.: V-rep: a versatile and scalable robot simulation framework, pp. 1321–1326. IEEE (2013)

    Google Scholar 

  22. Sklar, E.: Netlogo, a multi-agent simulation environment (2007)

    Article  Google Scholar 

  23. Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82 (December 2012). https://ompl.kavrakilab.org

    Article  Google Scholar 

  24. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT press Cambridge (1998)

    Google Scholar 

  25. Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intell. 2(2), 189–208 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin DeMarco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

DeMarco, K., Squires, E., Day, M., Pippin, C. (2019). Simulating Collaborative Robots in a Massive Multi-agent Game Environment (SCRIMMAGE). In: Correll, N., Schwager, M., Otte, M. (eds) Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-05816-6_20

Download citation

Publish with us

Policies and ethics