Skip to main content

Adaptive Path Formation in Self-Assembling Robot Swarms by Tree-Like Vascular Morphogenesis

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 9))

Abstract

For self-assembly, robot swarms can be programmed to form predefined shapes. However, if the swarm is required to adapt the assembled shapes to dynamic features of the environment at runtime, then the shapes’ structures need to be dynamic, too. A prerequisite for adaptation is the exploration and detection of changes followed by appropriate rearrangements of the assembled structure. We study a robot swarm that forms trees to explore its environment and searches for bright areas. The tree-formation process is inspired by the vascular morphogenesis of natural plants. The detection of light produces a virtual resource shared within the tree, helping to drop useless branches while reinforcing efficient paths between the bright areas and the tree root. We successfully verify our approach with several swarm robot experiments in a dynamic environment, showing that the robot swarm can collectively discriminate between light sources at different distances and of different qualities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Zenodo: https://doi.org/10.5281/zenodo.1251312.

    Youtube: https://youtu.be/M0Lu97QMKWM.

References

  1. Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific (2010)

    Google Scholar 

  2. Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. J. Theor. Biol. 309, 121–133 (2012)

    Article  MathSciNet  Google Scholar 

  3. Deneubourg, J.L., Goss, S., Franks, N., Pasteels, J.: The blind leading the blind: modeling chemically mediated army ant raid patterns. J. Insect Behav. 2(5), 719–725 (1989)

    Article  Google Scholar 

  4. Divband Soorati, M., Hamann, H.: Robot self-assembly as adaptive growth process: collective selection of seed position and self-organizing tree-structures. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5745–5750 (2016). https://doi.org/10.1109/IROS.2016.7759845

  5. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. Trans. Sys. Man Cyber. Part B 26(1), 29–41 (Feb 1996). https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  6. Gauci, M., Nagpal, R., Rubenstein, M.: Programmable self-disassembly for shape formation in large-scale robot collectives. In: 13th International Symposium on Distributed Autonomous Robotic Systems (DARS) (2016)

    Google Scholar 

  7. Gebhardt, G.H., Daun, K., Schnaubelt, M., Neumann, G., et al.: Learning robust policies for object manipulation with robot swarms (2018)

    Google Scholar 

  8. Goldstein, S.C., Campbell, J.D., Mowry, T.C.: Programmable matter. Computer 38(6), 99–101 (2005)

    Article  Google Scholar 

  9. Hamann, H.: Swarm Robotics: A Formal Approach. Springer (2018)

    Google Scholar 

  10. Hamann, H., Divband Soorati, M., Heinrich, M.K., Hofstadler, D.N., Kuksin, I., Veenstra, F., Wahby, M., Nielsen, S.A., Risi, S., Skrzypczak, T., Zahadat, P., Wojtaszek, P., Støy, K., Schmickl, T., Kernbach, S., Ayres, P.: flora robotica–an architectural system combining living natural plants and distributed robots (2017). arXiv preprint arXiv:1709.04291

  11. Hamann, H., Wahby, M., Schmickl, T., Zahadat, P., Hofstadler, D., Støy, K., Risi, S., Faina, A., Veenstra, F., Kernbach, S., Kuksin, I., Kernbach, O., Ayres, P., Wojtaszek, P.: flora robotica—mixed societies of symbiotic robot-plant bio-hybrids. In: Proceedings of IEEE Symposium on Computational Intelligence (SSCI), pp. 1102–1109. IEEE (2015). https://doi.org/10.1109/SSCI.2015.158

  12. LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: progress and prospects. In: Donald, B.R., Lynch, K.M., Rus, D. (eds.) Algorithmic and Computational Robotics: New Directions, pp. 293–308. A. K. Peters, Wellesley, MA, USA (2001)

    Google Scholar 

  13. Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer (Feb 2010)

    Google Scholar 

  14. McEvoy, M.A., Correll, N.: Materials that couple sensing, actuation, computation, and communication. Science 347(6228) (2015). http://science.sciencemag.org/content/347/6228/1261689

    Article  Google Scholar 

  15. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors, pp. 3293–3298 (2012)

    Google Scholar 

  16. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014). https://doi.org/10.1126/science.1254295

    Article  Google Scholar 

  17. Saldana, D., Gabrich, B., Salda, D.: Modquad: the flying modular structure that self-assembles in midair (2018)

    Google Scholar 

  18. Schmickl, T., Crailsheim, K.: A navigation algorithm for swarm robotics inspired by slime mold aggregation. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) Swarm Robotics—Second SAB 2006 International Workshop, LNCS, vol. 4433, pp. 1–13. Springer, Berlin, Heidelberg, New York (2007)

    Google Scholar 

  19. Zahadat, P., Hofstadler, D.N., Schmickl, T.: Development of morphology based on resource distribution: finding the shortest path in a maze by vascular morphogenesis controller. In: 14th European Conference on Artificial Life (ECAL), vol. 14, pp. 428–429 (2017)

    Google Scholar 

  20. Zahadat, P., Hofstadler, D.N., Schmickl, T.: Vascular morphogenesis controller: a generative model for developing morphology of artificial structures. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 163–170. GECCO’17, ACM, New York, NY, USA (2017). https://doi.org/10.1145/3071178.3071247

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Divband Soorati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Divband Soorati, M., Zahadat, P., Ghofrani, J., Hamann, H. (2019). Adaptive Path Formation in Self-Assembling Robot Swarms by Tree-Like Vascular Morphogenesis. In: Correll, N., Schwager, M., Otte, M. (eds) Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-05816-6_21

Download citation

Publish with us

Policies and ethics