Skip to main content

Hierarchical Design of Highway Merging Controller Using Navigation Vector Fields Under Bounded Sensing Uncertainty

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 9))

Abstract

This paper presents a hierarchical control design for the motion of an autonomous car (ego-vehicle) through traffic on a highway. The ego-vehicle is assumed to sense the position and speed of the surrounding cars with bounded errors, and its objective is to move safely among traffic. The design is composed of a low-level tracking controller and a high-level decision-making process: the low-level controller is based on a navigation vector field and a velocity controller that safely drive the ego-car to selected merging points. The merging points are decided based upon a cost function capturing the traffic conditions. Simulation results demonstrate the efficacy of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Almost global” means the integral curves of the vector field converge to the origin, except for a set of initial conditions of measure zero, which converge to a singular point of the vector field other than the desired position. Here, the singularity exists where the ego vehicle, target vehicle and desired position are co-linear and the targets is in-between the ego car and desired point. However, the corresponding initial conditions are not met in either the merging or the lane-keeping case.

References

  1. Alonso-Mora, J., Breitenmoser, A., Beardsley, P., Siegwart, R.: Reciprocal collision avoidance for multiple car-like robots. In: 2012 IEEE International Conference on Robotics and Automation, pp. 360–366 (May 2012)

    Google Scholar 

  2. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, 2008, pp. 1928–1935. ICRA 2008. IEEE (2008)

    Google Scholar 

  3. Carvalho, A., Gao, Y., Lefevre, S., Borrelli, F.: Stochastic predictive control of autonomous vehicles in uncertain environments. In: 12th International Symposium on Advanced Vehicle Control (2014)

    Google Scholar 

  4. Cesari, G., Schildbach, G., Carvalho, A., Borrelli, F.: Scenario model predictive control for lane change assistance and autonomous driving on highways. IEEE Intell. Transp. Syst. Mag. 9(3), 23–35 (2017)

    Article  Google Scholar 

  5. Chen, Y., Peng, H., Grizzle, J.: Obstacle avoidance for low-speed autonomous vehicles with barrier function. IEEE Trans. Control. Syst. Technol. 26(1), 194–206 (2018)

    Article  Google Scholar 

  6. Falcone, P., Eric Tseng, H., Borrelli, F., Asgari, J., Hrovat, D.: Mpc-based yaw and lateral stabilisation via active front steering and braking. Veh. Syst. Dyn. 46(S1), 611–628 (2008)

    Article  Google Scholar 

  7. Feller, C., Ebenbauer, C.: Weight recentered barrier functions and smooth polytopic terminal set formulations for linear model predictive control. In: American Control Conference (ACC), 2015, pp. 1647–1652. IEEE (2015)

    Google Scholar 

  8. Gipps, P.G.: A model for the structure of lane-changing decisions. Transp. Res. Part B Methodol. 20(5), 403–414 (1986)

    Article  Google Scholar 

  9. Han, D., Huang, L., Panagou, D.: Approximating the region of multi-task coordination via the optimal lyapunov-like barrier function (2018). arXiv:1802.09921

  10. Huang, L., Panagou, D.: Automated turning and merging for autonomous vehicles using a nonlinear model predictive control approach. In: American Control Conference (ACC), 2017, pp. 5525–5531. IEEE (2017)

    Google Scholar 

  11. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  Google Scholar 

  12. LaValle, S.M., Kuffner Jr., J.J.: Rapidly-exploring random trees: progress and prospects (2000)

    Google Scholar 

  13. Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J.Z., Langer, D., Pink, O., Pratt, V., Sokolsky, M., Stanek, G., Stavens, D., Teichman, A., Werling, M., Thrun, S.: Towards fully autonomous driving: systems and algorithms. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 163–168 (June 2011)

    Google Scholar 

  14. Li, J., Sun, X.: A route planning’s method for unmanned aerial vehicles based on improved a-star algorithm. Acta Armamentarii 7, 788–792 (2008)

    Google Scholar 

  15. Ma, X., Jiao, Z., Wang, Z., Panagou, D.: 3-d decentralized prioritized motion planning and coordination for high-density operations of micro aerial vehicles. IEEE Trans. Control. Syst. Technol. 26(3), 939–953 (May 2018)

    Article  Google Scholar 

  16. Nilsson, P., Hussien, O., Chen, Y., Balkan, A., Rungger, M., Ames, A., Grizzle, J., Ozay, N., Peng, H., Tabuada, P.: Preliminary results on correct-by-construction control software synthesis for adaptive cruise control, pp. 816–823 (Dec 2014)

    Google Scholar 

  17. Nilsson, P., Hussien, O., Balkan, A., Chen, Y., Ames, A.D., Grizzle, J.W., Ozay, N., Peng, H., Tabuada, P.: Correct-by-construction adaptive cruise control: two approaches. IEEE Trans. Control. Syst. Technol. 24(4), 1294–1307 (2016)

    Article  Google Scholar 

  18. Ort, T., Paull, L., Rus, D.: Autonomous vehicle navigation in rural environments without detailed prior maps

    Google Scholar 

  19. Panagou, D.: A distributed feedback motion planning protocol for multiple unicycle agents of different classes. IEEE Trans. Autom. Control. 62(3), 1178–1193 (March 2017)

    Article  MathSciNet  Google Scholar 

  20. Panagou, D., Stipanovic, D.M., Voulgaris, P.G.: Multi-objective control for multi-agent systems using lyapunov-like barrier functions. In: 52nd IEEE Conference on Decision and Control, pp. 1478–1483 (Dec 2013)

    Google Scholar 

  21. Rai, R., Sharma, B., Vanualailai, J.: Real and virtual leader-follower strategies in lane changing, merging and overtaking maneuvers. In: 2015 2nd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), pp. 1–12. IEEE (2015)

    Google Scholar 

  22. Wills, A., Heath, W.: A recentred barrier for constrained receding horizon control. In: American Control Conference, 2002. Proceedings of the 2002, vol. 5, pp. 4177–4182. IEEE (2002)

    Google Scholar 

  23. Zhou, D., Wang, Z., Bandyopadhyay, S., Schwager, M.: Fast, on-line collision avoidance for dynamic vehicles using buffered voronoi cells. IEEE Robot. Autom. Lett. 2(2), 1047–1054 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Toyota Research Institute (TRI) provided funds to assist the authors with their research but this article solely reflects the opinions and conclusions of its authors and not TRI or any other Toyota entity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixing Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, L., Panagou, D. (2019). Hierarchical Design of Highway Merging Controller Using Navigation Vector Fields Under Bounded Sensing Uncertainty. In: Correll, N., Schwager, M., Otte, M. (eds) Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-05816-6_24

Download citation

Publish with us

Policies and ethics