Abstract
A novel statistical channel impulse response model at 2.6 GHz is proposed for the indoor stairs and corridor environment. The model is based on the frequency domain auto-regressive (AR) process. The samples of the complex frequency response can be described as the output of the AR transfer function driven by a Gaussian white-noise process. In this model, the number of poles of the AR transfer function is determined by the significant paths of radio propagation. The paths depend on the reflectors of different propagation environment. The accuracy of the AR modeling has been verified by utilizing the root-mean-square error and root-mean-square delay spread as metrics. The model is also compared with the conventional tapped delay line model. The proposed model can be useful for the development and design of future communication.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Huang, Y.M.: Signal processing for MIMO-NOMA: present and future challenges. IEEE Wirel. Commun. Mag. 25(2), 32–38 (2018)
Zhu, J.Y., Wang, J.H., Huang, Y.M., He, S.W., You, X.H., Yang, L.X.: On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE J. Sel. Areas Commun. 35(12), 2744–2757 (2017)
Xiao, M., Mumtaz, S., Huang, Y.M.: Millimeter wave communications for future mobile networks. IEEE J. Sel. Areas Commun. 35(9), 1909–1935 (2017)
Xiang, W., Zheng, K., Shen, X.: 5G Mobile Communications. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-34208-5
Geng, S., Vainikainen, P.: Millimeter-wave propagation in indoor corridors. IEEE Antennas Wirel. Propag. Lett. 8, 1242–1245 (2009)
Rao, T.R., Murugesan, D., Ramesh, S., Labay, V.A.: Radio channel characteristics in an indoor corridor environment at 60 GHz for wireless networks. In: 5th International Conference on Advanced Networks and Telecommunication Systems, pp. 1–5. IEEE, Bangalore (2011)
Lim, S.Y., Yun, Z., Baker, J.M., Celik, N., Youn, H.S., Iskander, M.F.: Propagation modeling and measurement for a multifloor stairwell. IEEE Antennas Wirel. Propag. Lett. 8, 583–586 (2009)
Zhao, X., Kivinen, J., Vainnikainen, P.: Tapped delay line channel models at 5.3 GHz in indoor environments. In: 52nd Vehicular Technology Conference, pp. 1–5. IEEE, Boston (2000)
Yu, Y., Liu, Y., Lu, W.J., Jin, S., Zhu, H.B.: Modeling and simulation of channel power delay profile under indoor stair environment. IET Commun. 11(1), 119–126 (2017)
Suzuki, H.: A statistical model for urban radio propagation. IEEE Trans. Commun. 25(7), 673–680 (1977)
Saleh, A.A.M., Valenzuela, R.: A statistical model for indoor multipath propagation. IEEE J. Sel. Areas Commun. 5(2), 128–137 (1987)
Liu, Y., Yu, Y., Lu, W.J., Zhu, H.B.: Antenna-height-dependent path loss model and shadowing characteristics under indoor stair environment at 2.6 GHz. IEEJ Trans. Electr. Electron. Eng. 10(5), 498–502 (2015)
Emanuel, P., Kunio, T., Genshiro, K.: Selected Papers of Hirotugu Akaike. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-1694-0
Morrison, G., Fattouche, M., Zaghloul, H.: Statistical analysis and autoregressive modeling of the indoor radio propagation channel. In: 1st International Conference on Universal Personal Communications, pp. 97–101. IEEE, Dallas (1992)
Yang, C.F., Wu, B.C.: A ray-tracing/PMM hybrid approach for determining wave propagation through periodic structures. IEEE Trans. Veh. Technol. 50(3), 791–795 (2001)
Howard, S.J., Pahlavan, K.: Autoregressive modeling of wide-band indoor radio propagation. IEEE Trans. Commun. 40(9), 1540–1552 (1992)
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant No. 61701197 and 61571108, the Open Foundation of Key Laboratory of Wireless Communication, Nanjing University of Posts and Telecommunication, Jiangsu Province, under Grant No. 2017WICOM01, the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University, under Grant No. 2018D15, the Open Foundation of State Key Laboratory of Networking and Switching Technology, the Fundamental Research Funds for the Central Universities under Grant No. JUSRP11742 and JUSRP11738, the Postgraduate Research & Practice Innovation Program of Jiangsu Provence under Grant No. SJCX18_0646.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Liang, J., Lu, W., Liu, Y., Wu, Q., Li, B., Li, Z. (2019). Channel Impulse Response Analysis of the Indoor Propagation Based on Auto-Regressive Modeling. In: Zheng, J., Xiang, W., Lorenz, P., Mao, S., Yan, F. (eds) Ad Hoc Networks. ADHOCNETS 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 258. Springer, Cham. https://doi.org/10.1007/978-3-030-05888-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-05888-3_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05887-6
Online ISBN: 978-3-030-05888-3
eBook Packages: Computer ScienceComputer Science (R0)